A Fast 3D CNN for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2004.14152v1
- Date: Wed, 29 Apr 2020 12:57:36 GMT
- Title: A Fast 3D CNN for Hyperspectral Image Classification
- Authors: Muhammad Ahmad
- Abstract summary: Hyperspectral imaging (HSI) has been extensively utilized for a number of real-world applications.
A 2D Convolutional Neural Network (CNN) is a viable approach whereby HSIC highly depends on both Spectral-Spatial information.
This work proposed a 3D CNN model that utilizes both spatial-spectral feature maps to attain good performance.
- Score: 0.456877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imaging (HSI) has been extensively utilized for a number of
real-world applications. HSI classification (HSIC) is a challenging task due to
high inter-class similarity, high intra-class variability, overlapping, and
nested regions. A 2D Convolutional Neural Network (CNN) is a viable approach
whereby HSIC highly depends on both Spectral-Spatial information, therefore, 3D
CNN can be an alternative but highly computational complex due to the volume
and spectral dimensions. Furthermore, these models do not extract quality
feature maps and may underperform over the regions having similar textures.
Therefore, this work proposed a 3D CNN model that utilizes both
spatial-spectral feature maps to attain good performance. In order to achieve
the said performance, the HSI cube is first divided into small overlapping 3D
patches. Later these patches are processed to generate 3D feature maps using a
3D kernel function over multiple contiguous bands that persevere the spectral
information as well. Benchmark HSI datasets (Pavia University, Salinas and
Indian Pines) are considered to validate the performance of our proposed
method. The results are further compared with several state-of-the-art methods.
Related papers
- Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis.
3D Gaussian splatting has shown state-of-the-art performance on real-time radiance field rendering.
We propose architectural and training changes to efficiently avert this problem.
arXiv Detail & Related papers (2023-12-06T00:46:30Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Sharpend Cosine Similarity based Neural Network for Hyperspectral Image
Classification [0.456877715768796]
Hyperspectral Image Classification (HSIC) is a difficult task due to high inter and intra-class similarity and variability, nested regions, and overlapping.
2D Convolutional Neural Networks (CNN) emerged as a viable network whereas, 3D CNNs are a better alternative due to accurate classification.
This paper introduces Sharpened Cosine Similarity (SCS) concept as an alternative to convolutions in a Neural Network for HSIC.
arXiv Detail & Related papers (2023-05-26T07:04:00Z) - Mesh Convolution with Continuous Filters for 3D Surface Parsing [101.25796935464648]
We propose a series of modular operations for effective geometric feature learning from 3D triangle meshes.
Our mesh convolutions exploit spherical harmonics as orthonormal bases to create continuous convolutional filters.
We further contribute a novel hierarchical neural network for perceptual parsing of 3D surfaces, named PicassoNet++.
arXiv Detail & Related papers (2021-12-03T09:16:49Z) - SpectralNET: Exploring Spatial-Spectral WaveletCNN for Hyperspectral
Image Classification [0.0]
Hyperspectral Image (HSI) classification using Convolutional Neural Networks (CNN) is widely found in the current literature.
We propose SpectralNET, a wavelet CNN, which is a variation of 2D CNN for multi-resolution HSI classification.
arXiv Detail & Related papers (2021-04-01T08:45:15Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2D and 3D CNN models have proved highly efficient in exploiting the spatial and spectral information of Hyperspectral Images.
This work proposed a lightweight CNN (3D followed by 2D-CNN) model which significantly reduces the computational cost.
arXiv Detail & Related papers (2021-01-25T18:43:57Z) - 3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral
Image Classification [5.727964191623458]
Hyperspectral images involve abundant spectral and spatial information, playing an irreplaceable role in land-cover classification.
Recently, based on deep learning technologies, an increasing number of HSI classification approaches have been proposed, which demonstrate promising performance.
Previous studies suffer from two major drawbacks: 1) the architecture of most deep learning models is manually designed, relies on specialized knowledge, and is relatively tedious.
arXiv Detail & Related papers (2021-01-12T04:15:40Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
We propose an end-to-end 3-D lightweight convolutional neural network (CNN) for limited samples-based HSI classification.
Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost.
Our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
arXiv Detail & Related papers (2020-12-07T03:44:35Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.