Sharpend Cosine Similarity based Neural Network for Hyperspectral Image
Classification
- URL: http://arxiv.org/abs/2305.16682v1
- Date: Fri, 26 May 2023 07:04:00 GMT
- Title: Sharpend Cosine Similarity based Neural Network for Hyperspectral Image
Classification
- Authors: Muhammad Ahmad
- Abstract summary: Hyperspectral Image Classification (HSIC) is a difficult task due to high inter and intra-class similarity and variability, nested regions, and overlapping.
2D Convolutional Neural Networks (CNN) emerged as a viable network whereas, 3D CNNs are a better alternative due to accurate classification.
This paper introduces Sharpened Cosine Similarity (SCS) concept as an alternative to convolutions in a Neural Network for HSIC.
- Score: 0.456877715768796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral Image Classification (HSIC) is a difficult task due to high
inter and intra-class similarity and variability, nested regions, and
overlapping. 2D Convolutional Neural Networks (CNN) emerged as a viable network
whereas, 3D CNNs are a better alternative due to accurate classification.
However, 3D CNNs are highly computationally complex due to their volume and
spectral dimensions. Moreover, down-sampling and hierarchical filtering (high
frequency) i.e., texture features need to be smoothed during the forward pass
which is crucial for accurate HSIC. Furthermore, CNN requires tons of tuning
parameters which increases the training time. Therefore, to overcome the
aforesaid issues, Sharpened Cosine Similarity (SCS) concept as an alternative
to convolutions in a Neural Network for HSIC is introduced. SCS is
exceptionally parameter efficient due to skipping the non-linear activation
layers, normalization, and dropout after the SCS layer. Use of MaxAbsPool
instead of MaxPool which selects the element with the highest magnitude of
activity, even if it's negative. Experimental results on publicly available HSI
datasets proved the performance of SCS as compared to the convolutions in
Neural Networks.
Related papers
- Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
This paper builds a spiking neural network (SNN) based on the leaky integrate-and-fire (LIF) neuron model for HSI classification tasks.
SNN-SWMR requires a time step reduction of about 84%, training time, and testing time reduction of about 63% and 70% at the same accuracy.
arXiv Detail & Related papers (2024-09-18T00:51:01Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - HYPER-SNN: Towards Energy-efficient Quantized Deep Spiking Neural
Networks for Hyperspectral Image Classification [5.094623170336122]
Spiking Neural Networks (SNNs) are trained with quantization-aware gradient descent to optimize weights, membrane leak, and firing thresholds.
During both training and inference, the analog pixel values of a HSI are directly applied to the input layer of the SNN without the need to convert to a spike-train.
We evaluate our proposal using three HSI datasets on a 3-D and a 3-D/2-D hybrid convolutional architecture.
arXiv Detail & Related papers (2021-07-26T06:17:10Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
We propose an end-to-end 3-D lightweight convolutional neural network (CNN) for limited samples-based HSI classification.
Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost.
Our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
arXiv Detail & Related papers (2020-12-07T03:44:35Z) - Hyperspectral Image Classification with Spatial Consistence Using Fully
Convolutional Spatial Propagation Network [9.583523548244683]
Deep convolutional neural networks (CNNs) have shown impressive ability to represent hyperspectral images (HSIs)
We propose a novel end-to-end, pixels-to-pixels fully convolutional spatial propagation network (FCSPN) for HSI classification.
FCSPN consists of a 3D fully convolution network (3D-FCN) and a convolutional spatial propagation network (CSPN)
arXiv Detail & Related papers (2020-08-04T09:05:52Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - A Fast 3D CNN for Hyperspectral Image Classification [0.456877715768796]
Hyperspectral imaging (HSI) has been extensively utilized for a number of real-world applications.
A 2D Convolutional Neural Network (CNN) is a viable approach whereby HSIC highly depends on both Spectral-Spatial information.
This work proposed a 3D CNN model that utilizes both spatial-spectral feature maps to attain good performance.
arXiv Detail & Related papers (2020-04-29T12:57:36Z) - Hyperspectral Classification Based on 3D Asymmetric Inception Network
with Data Fusion Transfer Learning [36.05574127972413]
We first deliver a 3D asymmetric inception network, AINet, to overcome the overfitting problem.
With the emphasis on spectral signatures over spatial contexts of HSI data, AINet can convey and classify the features effectively.
arXiv Detail & Related papers (2020-02-11T06:37:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.