Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context
- URL: http://arxiv.org/abs/2004.14251v1
- Date: Wed, 29 Apr 2020 14:59:58 GMT
- Title: Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context
- Authors: Jan-Nico Zaech, Dengxin Dai, Alexander Liniger, Luc Van Gool
- Abstract summary: This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
- Score: 152.0714518512966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work studies the problem of predicting the sequence of future actions
for surround vehicles in real-world driving scenarios. To this aim, we make
three main contributions. The first contribution is an automatic method to
convert the trajectories recorded in real-world driving scenarios to action
sequences with the help of HD maps. The method enables automatic dataset
creation for this task from large-scale driving data. Our second contribution
lies in applying the method to the well-known traffic agent tracking and
prediction dataset Argoverse, resulting in 228,000 action sequences.
Additionally, 2,245 action sequences were manually annotated for testing. The
third contribution is to propose a novel action sequence prediction method by
integrating past positions and velocities of the traffic agents, map
information and social context into a single end-to-end trainable neural
network. Our experiments prove the merit of the data creation method and the
value of the created dataset - prediction performance improves consistently
with the size of the dataset and shows that our action prediction method
outperforms comparing models.
Related papers
- Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Trajectory Prediction with Observations of Variable-Length for Motion
Planning in Highway Merging scenarios [5.193470362635256]
Existing methods cannot initiate prediction for a vehicle unless observed for a fixed duration of two or more seconds.
This paper proposes a novel transformer-based trajectory prediction approach, specifically trained to handle any observation length larger than one frame.
We perform a comprehensive evaluation of the proposed method using two large-scale highway trajectory datasets.
arXiv Detail & Related papers (2023-06-08T18:03:48Z) - Learning Pedestrian Actions to Ensure Safe Autonomous Driving [12.440017892152417]
It is critical for Autonomous Vehicles to have the ability to predict pedestrians' short-term and immediate actions in real-time.
In this work, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction.
The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction.
arXiv Detail & Related papers (2023-05-22T14:03:38Z) - Action-based Contrastive Learning for Trajectory Prediction [4.675212251005813]
Trajectory prediction is an essential task for successful human robot interaction, such as in autonomous driving.
In this work, we address the problem of predicting future pedestrian trajectories in a first person view setting with a moving camera.
We propose a novel action-based contrastive learning loss, that utilizes pedestrian action information to improve the learned trajectory embeddings.
arXiv Detail & Related papers (2022-07-18T15:02:27Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction
in 3D [10.580548257913843]
We propose a new pedestrian action prediction dataset created by adding per-frame 2D/3D bounding box and behavioral annotations to nuScenes.
In addition, we propose a hybrid neural network architecture that incorporates various data modalities for predicting pedestrian crossing action.
arXiv Detail & Related papers (2020-12-14T18:13:44Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
We present a novel, label-free algorithm, AutoTrajectory, for trajectory extraction and prediction.
To better capture the moving objects in videos, we introduce dynamic points.
We aggregate dynamic points to instance points, which stand for moving objects such as pedestrians in videos.
arXiv Detail & Related papers (2020-07-11T08:43:34Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.