PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction
in 3D
- URL: http://arxiv.org/abs/2012.07773v1
- Date: Mon, 14 Dec 2020 18:13:44 GMT
- Title: PePScenes: A Novel Dataset and Baseline for Pedestrian Action Prediction
in 3D
- Authors: Amir Rasouli, Tiffany Yau, Peter Lakner, Saber Malekmohammadi, Mohsen
Rohani, Jun Luo
- Abstract summary: We propose a new pedestrian action prediction dataset created by adding per-frame 2D/3D bounding box and behavioral annotations to nuScenes.
In addition, we propose a hybrid neural network architecture that incorporates various data modalities for predicting pedestrian crossing action.
- Score: 10.580548257913843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the behavior of road users, particularly pedestrians, is vital for
safe motion planning in the context of autonomous driving systems.
Traditionally, pedestrian behavior prediction has been realized in terms of
forecasting future trajectories. However, recent evidence suggests that
predicting higher-level actions, such as crossing the road, can help improve
trajectory forecasting and planning tasks accordingly. There are a number of
existing datasets that cater to the development of pedestrian action prediction
algorithms, however, they lack certain characteristics, such as bird's eye view
semantic map information, 3D locations of objects in the scene, etc., which are
crucial in the autonomous driving context. To this end, we propose a new
pedestrian action prediction dataset created by adding per-frame 2D/3D bounding
box and behavioral annotations to the popular autonomous driving dataset,
nuScenes. In addition, we propose a hybrid neural network architecture that
incorporates various data modalities for predicting pedestrian crossing action.
By evaluating our model on the newly proposed dataset, the contribution of
different data modalities to the prediction task is revealed. The dataset is
available at https://github.com/huawei-noah/PePScenes.
Related papers
- Comparison of Pedestrian Prediction Models from Trajectory and
Appearance Data for Autonomous Driving [13.126949982768505]
The ability to anticipate pedestrian motion changes is a critical capability for autonomous vehicles.
In urban environments, pedestrians may enter the road area and create a high risk for driving.
This work presents a comparative evaluation of trajectory-only and appearance-based methods for pedestrian prediction.
arXiv Detail & Related papers (2023-05-25T11:24:38Z) - Pedestrian 3D Bounding Box Prediction [83.7135926821794]
We focus on 3D bounding boxes, which are reasonable estimates of humans without modeling complex motion details for autonomous vehicles.
We suggest this new problem and present a simple yet effective model for pedestrians' 3D bounding box prediction.
This method follows an encoder-decoder architecture based on recurrent neural networks.
arXiv Detail & Related papers (2022-06-28T17:59:45Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
We propose a novel graph-based model for predicting pedestrian crossing action.
We introduce a new dataset that provides 3D bounding box and pedestrian behavioural annotations for the existing nuScenes dataset.
Our approach achieves state-of-the-art performance by improving on various metrics by more than 15% in comparison to existing methods.
arXiv Detail & Related papers (2020-12-03T18:28:27Z) - STINet: Spatio-Temporal-Interactive Network for Pedestrian Detection and
Trajectory Prediction [24.855059537779294]
We present a novel end-to-end two-stage network: Spatio--Interactive Network (STINet)
In addition to 3D geometry of pedestrians, we model temporal information for each of the pedestrians.
Our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames.
arXiv Detail & Related papers (2020-05-08T18:43:01Z) - Action Sequence Predictions of Vehicles in Urban Environments using Map
and Social Context [152.0714518512966]
This work studies the problem of predicting the sequence of future actions for surround vehicles in real-world driving scenarios.
The first contribution is an automatic method to convert the trajectories recorded in real-world driving scenarios to action sequences with the help of HD maps.
The second contribution lies in applying the method to the well-known traffic agent tracking and prediction dataset Argoverse, resulting in 228,000 action sequences.
The third contribution is to propose a novel action sequence prediction method by integrating past positions and velocities of the traffic agents, map information and social context into a single end-to-end trainable neural network
arXiv Detail & Related papers (2020-04-29T14:59:58Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.