WT5?! Training Text-to-Text Models to Explain their Predictions
- URL: http://arxiv.org/abs/2004.14546v1
- Date: Thu, 30 Apr 2020 02:20:14 GMT
- Title: WT5?! Training Text-to-Text Models to Explain their Predictions
- Authors: Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel,
Karishma Malkan
- Abstract summary: We leverage the text-to-text framework proposed by Raffel et al.( 2019) to train language models to output a natural text explanation alongside their prediction.
We show that this approach not only obtains state-of-the-art results on explainability, but also permits learning from a limited set of labeled explanations.
- Score: 38.59658315243017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have recently achieved human-level performance on various
challenging natural language processing (NLP) tasks, but it is notoriously
difficult to understand why a neural network produced a particular prediction.
In this paper, we leverage the text-to-text framework proposed by Raffel et
al.(2019) to train language models to output a natural text explanation
alongside their prediction. Crucially, this requires no modifications to the
loss function or training and decoding procedures -- we simply train the model
to output the explanation after generating the (natural text) prediction. We
show that this approach not only obtains state-of-the-art results on
explainability benchmarks, but also permits learning from a limited set of
labeled explanations and transferring rationalization abilities across
datasets. To facilitate reproducibility and future work, we release our code
use to train the models.
Related papers
- Semformer: Transformer Language Models with Semantic Planning [18.750863564495006]
Next-token prediction serves as the dominant component in current neural language models.
We introduce Semformer, a novel method of training a Transformer language model that explicitly models the semantic planning of response.
arXiv Detail & Related papers (2024-09-17T12:54:34Z) - Faithfulness Tests for Natural Language Explanations [87.01093277918599]
Explanations of neural models aim to reveal a model's decision-making process for its predictions.
Recent work shows that current methods giving explanations such as saliency maps or counterfactuals can be misleading.
This work explores the challenging question of evaluating the faithfulness of natural language explanations.
arXiv Detail & Related papers (2023-05-29T11:40:37Z) - Parallel Sentence-Level Explanation Generation for Real-World
Low-Resource Scenarios [18.5713713816771]
This paper is the first to explore the problem smoothly from weak-supervised learning to unsupervised learning.
We propose a non-autoregressive interpretable model to facilitate parallel explanation generation and simultaneous prediction.
arXiv Detail & Related papers (2023-02-21T14:52:21Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Leveraging Natural Supervision for Language Representation Learning and
Generation [8.083109555490475]
We describe three lines of work that seek to improve the training and evaluation of neural models using naturally-occurring supervision.
We first investigate self-supervised training losses to help enhance the performance of pretrained language models for various NLP tasks.
We propose a framework that uses paraphrase pairs to disentangle semantics and syntax in sentence representations.
arXiv Detail & Related papers (2022-07-21T17:26:03Z) - Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing [78.8500633981247]
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning"
Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly.
arXiv Detail & Related papers (2021-07-28T18:09:46Z) - You Can Do Better! If You Elaborate the Reason When Making Prediction [13.658942796267015]
This paper proposes a novel neural predictive framework coupled with large pre-trained language models to make a prediction and generate its corresponding explanation simultaneously.
We conducted a preliminary empirical study on Chinese medical multiple-choice question answering, English natural language inference and commonsense question answering tasks.
The proposed method also achieves improved prediction accuracy on three datasets, which indicates that making predictions can benefit from generating the explanation in the decision process.
arXiv Detail & Related papers (2021-03-27T14:55:19Z) - Learning to Rationalize for Nonmonotonic Reasoning with Distant
Supervision [44.32874972577682]
We investigate the extent to which neural models can reason about natural language rationales that explain model predictions.
We use pre-trained language models, neural knowledge models, and distant supervision from related tasks.
Our model shows promises at generating post-hoc rationales explaining why an inference is more or less likely given the additional information.
arXiv Detail & Related papers (2020-12-14T23:50:20Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
We develop a framework for interpretable natural language understanding that requires only a small set of human annotated explanations for training.
Our framework treats natural language explanations as latent variables that model the underlying reasoning process of a neural model.
arXiv Detail & Related papers (2020-10-24T02:05:56Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
Large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control.
We show that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements.
Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
arXiv Detail & Related papers (2020-06-11T17:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.