Language Model Pre-Training with Sparse Latent Typing
- URL: http://arxiv.org/abs/2210.12582v2
- Date: Wed, 26 Oct 2022 22:41:30 GMT
- Title: Language Model Pre-Training with Sparse Latent Typing
- Authors: Liliang Ren, Zixuan Zhang, Han Wang, Clare R. Voss, Chengxiang Zhai,
Heng Ji
- Abstract summary: We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
- Score: 66.75786739499604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern large-scale Pre-trained Language Models (PLMs) have achieved
tremendous success on a wide range of downstream tasks. However, most of the LM
pre-training objectives only focus on text reconstruction, but have not sought
to learn latent-level interpretable representations of sentences. In this
paper, we manage to push the language models to obtain a deeper understanding
of sentences by proposing a new pre-training objective, Sparse Latent Typing,
which enables the model to sparsely extract sentence-level keywords with
diverse latent types. Experimental results show that our model is able to learn
interpretable latent type categories in a self-supervised manner without using
any external knowledge. Besides, the language model pre-trained with such an
objective also significantly improves Information Extraction related downstream
tasks in both supervised and few-shot settings. Our code is publicly available
at: https://github.com/renll/SparseLT.
Related papers
- A Comparison of Language Modeling and Translation as Multilingual Pretraining Objectives [13.581385765600265]
Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community.
This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment.
arXiv Detail & Related papers (2024-07-22T09:16:30Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z) - Forging Multiple Training Objectives for Pre-trained Language Models via
Meta-Learning [97.28779163988833]
Multiple pre-training objectives fill the vacancy of the understanding capability of single-objective language modeling.
We propose textitMOMETAS, a novel adaptive sampler based on meta-learning, which learns the latent sampling pattern on arbitrary pre-training objectives.
arXiv Detail & Related papers (2022-10-19T04:38:26Z) - Few-shot Subgoal Planning with Language Models [58.11102061150875]
We show that language priors encoded in pre-trained language models allow us to infer fine-grained subgoal sequences.
In contrast to recent methods which make strong assumptions about subgoal supervision, our experiments show that language models can infer detailed subgoal sequences without any fine-tuning.
arXiv Detail & Related papers (2022-05-28T01:03:30Z) - Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners [23.150999852147283]
This study proposes a novel pluggable, and efficient approach named DifferentiAble pRompT (DART)
It can convert small language models into better few-shot learners without any prompt engineering.
A comprehensive evaluation of standard NLP tasks demonstrates that the proposed approach achieves a better few-shot performance.
arXiv Detail & Related papers (2021-08-30T12:29:25Z) - Evaluating Document Coherence Modelling [37.287725949616934]
We examine the performance of a broad range of pretrained LMs on a sentence intrusion detection task for English.
Our experiments show that pretrained LMs perform impressively in in-domain evaluation, but experience a substantial drop in the cross-domain setting.
arXiv Detail & Related papers (2021-03-18T10:05:06Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.