論文の概要: Analyzing the Surprising Variability in Word Embedding Stability Across
Languages
- arxiv url: http://arxiv.org/abs/2004.14876v2
- Date: Thu, 9 Sep 2021 20:15:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 04:23:12.681857
- Title: Analyzing the Surprising Variability in Word Embedding Stability Across
Languages
- Title(参考訳): 単語埋め込み安定性の言語間依存性の解析
- Authors: Laura Burdick, Jonathan K. Kummerfeld, Rada Mihalcea
- Abstract要約: 本稿では,安定性に関連する言語特性について論じ,それに付随する相関関係,言語性システム,その他の特徴について考察する。
これは、特に言語トレンドの研究に使用する研究において、埋め込み使用に影響を及ぼす。
- 参考スコア(独自算出の注目度): 46.84861591608146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Word embeddings are powerful representations that form the foundation of many
natural language processing architectures, both in English and in other
languages. To gain further insight into word embeddings, we explore their
stability (e.g., overlap between the nearest neighbors of a word in different
embedding spaces) in diverse languages. We discuss linguistic properties that
are related to stability, drawing out insights about correlations with
affixing, language gender systems, and other features. This has implications
for embedding use, particularly in research that uses them to study language
trends.
- Abstract(参考訳): 単語埋め込みは、英語と他の言語の両方で多くの自然言語処理アーキテクチャの基礎を形成する強力な表現である。
単語埋め込みに関するさらなる洞察を得るために、様々な言語における単語の安定性(例えば、異なる埋め込み空間における単語の最も近い隣同士の重なり)を探求する。
本稿では,安定性に関連する言語特性について論じ,接尾辞,言語性システム,その他の特徴との関係について考察する。
これは、特に言語トレンドを研究する研究において、埋め込み使用に影響を及ぼす。
関連論文リスト
- Entropy and type-token ratio in gigaword corpora [0.0]
本研究では,英語,スペイン語,トルコ語の6つの大規模言語データセットにおいて,語彙の多様性を示す2つの指標であるエントロピーとテキストトケン比について検討した。
コーパスを横切るエントロピーとテキスト-トケン比の関数的関係が検討されている。
この結果は,テキスト構造の理論的理解に寄与し,自然言語処理などの分野に実践的な意味を与える。
論文 参考訳(メタデータ) (2024-11-15T14:40:59Z) - Lexical Diversity in Kinship Across Languages and Dialects [6.80465507148218]
本稿では,言語多様性に関する内容と計算語彙を融合させる手法を提案する。
本手法は、血縁用語に関する2つの大規模ケーススタディを通じて検証される。
論文 参考訳(メタデータ) (2023-08-24T19:49:30Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
合成データを用いた体系的な実験により,すべての表現が文脈に依存しない意味を持つ言語では,自己回帰型とマスキング型の両方の言語モデルが,表現間の意味的関係をエミュレートする。
自然言語に目を向けると、特定の現象(参照不透明さ)による実験は、現在の言語モデルが自然言語の意味論をうまく表現していないという証拠を増大させる。
論文 参考訳(メタデータ) (2022-10-14T02:35:19Z) - Corpus-Guided Contrast Sets for Morphosyntactic Feature Detection in
Low-Resource English Varieties [3.3536302616846734]
コーパス誘導編集による効率的なコントラストセットの生成とフィルタリングを行う。
我々は、インド英語とアフリカ系アメリカ人の英語の特徴検出を改善し、言語研究をいかに支援できるかを実証し、他の研究者が使用するための微調整されたモデルをリリースすることを示した。
論文 参考訳(メタデータ) (2022-09-15T21:19:31Z) - When is BERT Multilingual? Isolating Crucial Ingredients for
Cross-lingual Transfer [15.578267998149743]
サブワード重複の欠如は,言語が単語順に異なる場合,ゼロショット転送に大きく影響することを示す。
言語間の伝達性能と単語埋め込みアライメントの間には強い相関関係がある。
その結果、言語間の単語埋め込みアライメントを明示的に改善する多言語モデルに焦点が当てられた。
論文 参考訳(メタデータ) (2021-10-27T21:25:39Z) - Dynamic Contextualized Word Embeddings [20.81930455526026]
言語的文脈と外言語的文脈の両方の関数として単語を表す動的文脈化単語埋め込みを導入する。
事前訓練された言語モデル(PLM)に基づいて、動的文脈化された単語埋め込みは、時間と社会空間を協調的にモデル化する。
4つの英語データセットの質的および定量的分析により,潜在的な応用シナリオを強調した。
論文 参考訳(メタデータ) (2020-10-23T22:02:40Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
我々は,NLPツールが構文的・形態学的に異なる言語で不平等に機能すると主張している。
実験研究を支援するために,単語順と形態的類似度指標を算出した。
論文 参考訳(メタデータ) (2020-04-29T03:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。