論文の概要: Template Guided Text Generation for Task-Oriented Dialogue
- arxiv url: http://arxiv.org/abs/2004.15006v2
- Date: Fri, 13 Nov 2020 21:08:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 04:41:47.158383
- Title: Template Guided Text Generation for Task-Oriented Dialogue
- Title(参考訳): タスク指向対話のためのテンプレート案内テキスト生成
- Authors: Mihir Kale, Abhinav Rastogi
- Abstract要約: Google Assistant、Amazon Alexa、Apple Siriなどのバーチャルアシスタントを使えば、ユーザーは自然言語を使ってWeb上の多数のサービスやAPIと対話できる。
本研究では,多数のAPIにまたがる1つのドメイン非依存モデルを用いて,自然言語生成のための2つの手法について検討する。
- 参考スコア(独自算出の注目度): 9.690158790639131
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri
enable users to interact with a large number of services and APIs on the web
using natural language. In this work, we investigate two methods for Natural
Language Generation (NLG) using a single domain-independent model across a
large number of APIs. First, we propose a schema-guided approach which
conditions the generation on a schema describing the API in natural language.
Our second method investigates the use of a small number of templates, growing
linearly in number of slots, to convey the semantics of the API. To generate
utterances for an arbitrary slot combination, a few simple templates are first
concatenated to give a semantically correct, but possibly incoherent and
ungrammatical utterance. A pre-trained language model is subsequently employed
to rewrite it into coherent, natural sounding text. Through automatic metrics
and human evaluation, we show that our method improves over strong baselines,
is robust to out-of-domain inputs and shows improved sample efficiency.
- Abstract(参考訳): Google Assistant、Amazon Alexa、Apple Siriといったバーチャルアシスタントを使えば、ユーザは自然言語を使ってWeb上の多数のサービスやAPIと対話できる。
本研究では,多数のAPIにまたがる単一ドメイン非依存モデルを用いて,自然言語生成(NLG)の2つの手法について検討する。
まず,apiを自然言語で記述したスキーマ生成を条件としたスキーマ誘導手法を提案する。
第2の方法は,APIのセマンティクスを伝えるために,少数のテンプレートを使用し,スロット数を線形に増加させることである。
任意のスロットの組み合わせに対する発話を生成するために、まずいくつかの単純なテンプレートを連結して意味論的に正しいが、不整合で非文法的な発話を与える。
その後、事前学習された言語モデルを使用して、コヒーレントで自然な発音テキストに書き換える。
自動測定と人的評価により,本手法は強力なベースラインよりも改善され,ドメイン外の入力に頑健であり,サンプル効率が向上することを示す。
関連論文リスト
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Most Language Models can be Poets too: An AI Writing Assistant and
Constrained Text Generation Studio [0.5097809301149341]
ほとんどの言語モデルは、大きな制約の下でも魅力的なテキストを生成する。
本稿では,言語モデルの語彙にフィルタ関数を合成することにより,言語モデルの出力を変更する手法を提案する。
また,この技術であるGadsbyを紹介するHuggingfaceスペースWebアプリケーションについても紹介する。
論文 参考訳(メタデータ) (2023-06-28T05:10:51Z) - Binding Language Models in Symbolic Languages [146.3027328556881]
Binderはトレーニング不要のニューラルシンボリックフレームワークで、タスク入力をプログラムにマッピングする。
解析の段階では、Codexは元のプログラミング言語では答えられないタスク入力の一部を特定することができる。
実行段階では、CodexはAPI呼び出しで適切なプロンプトを与えられた万能機能を実行することができる。
論文 参考訳(メタデータ) (2022-10-06T12:55:17Z) - Training Naturalized Semantic Parsers with Very Little Data [10.709587018625275]
State-of-the-art(SOTA)セマンティクスは、大量のテキストに基づいて事前訓練された大規模な言語モデルに基づくセク2セックアーキテクチャである。
最近の研究は意味解析の改革を探求しており、出力シーケンスはそれ自体が自然言語文である。
本手法は,Overnightデータセット上で新たなSOTA数ショット性能を実現する。
論文 参考訳(メタデータ) (2022-04-29T17:14:54Z) - On the Effectiveness of Pretrained Models for API Learning [8.788509467038743]
開発者は、Excelファイルのパース、行ごとのテキストファイルの読み書きなど、特定の機能を実装するためにAPIを使うことが多い。
開発者は、より高速でクリーンな方法でアプリケーションを構築するために、自然言語クエリに基づいた自動API使用シーケンス生成の恩恵を受けることができる。
既存のアプローチでは、クエリが与えられたAPIシーケンスの検索や、RNNベースのエンコーダデコーダを使用してAPIシーケンスを生成するために、情報検索モデルを使用している。
論文 参考訳(メタデータ) (2022-04-05T20:33:24Z) - WARP: Word-level Adversarial ReProgramming [13.08689221166729]
多くのアプリケーションでは、多くのパラメータを複数のタスクで共有できるように、より小さなパラメータセットをチューニングすることが望ましい。
自動プロンプト生成に関する初期の研究を拡張した逆転プログラミングに基づく代替アプローチを提案する。
提案手法は,SST-2およびMNLIデータセット上で,類似のトレーニング可能なパラメータ数で他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-01T00:41:03Z) - Generating Synthetic Data for Task-Oriented Semantic Parsing with
Hierarchical Representations [0.8203855808943658]
本研究では,ニューラルセマンティック解析のための合成データ生成の可能性を検討する。
具体的には、まず既存のラベル付き発話からマスク付きテンプレートを抽出し、次に微調整BARTを用いて合成発話条件を生成する。
ナビゲーション領域のためのFacebook TOPデータセットを評価する際に、我々のアプローチの可能性を示す。
論文 参考訳(メタデータ) (2020-11-03T22:55:40Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - N-LTP: An Open-source Neural Language Technology Platform for Chinese [68.58732970171747]
textttN-は、中国の6つの基本的なNLPタスクをサポートする、オープンソースのニューラルネットワークテクノロジプラットフォームである。
textttN-は、中国のタスク間で共有知識をキャプチャする利点がある共有事前学習モデルを使用することで、マルチタスクフレームワークを採用する。
論文 参考訳(メタデータ) (2020-09-24T11:45:39Z) - Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems [74.8759568242933]
タスク指向対話システムは、自然言語理解(NLU)、対話状態追跡(DST)、対話ポリシー(DP)、自然言語生成(NLG)の4つの連結モジュールを使用する。
研究課題は、データ収集に関連する高コストから最小限のサンプルで各モジュールを学習することである。
我々は,NLU,DP,NLGタスクにおいて,言語モデルの素小ショット能力を評価する。
論文 参考訳(メタデータ) (2020-08-14T08:23:21Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
FewShotWozは,タスク指向対話システムにおける数ショットの学習設定をシミュレートする最初の NLG ベンチマークである。
我々は, SC-GPTモデルを開発し, その制御可能な生成能力を得るために, 注釈付きNLGコーパスの大規模なセットで事前学習を行った。
FewShotWozとMulti-Domain-WOZデータセットの実験は、提案したSC-GPTが既存の手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2020-02-27T18:48:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。