Template Guided Text Generation for Task-Oriented Dialogue
- URL: http://arxiv.org/abs/2004.15006v2
- Date: Fri, 13 Nov 2020 21:08:36 GMT
- Title: Template Guided Text Generation for Task-Oriented Dialogue
- Authors: Mihir Kale, Abhinav Rastogi
- Abstract summary: Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language.
In this work, we investigate two methods for Natural Language Generation using a single domain-independent model across a large number of APIs.
- Score: 9.690158790639131
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri
enable users to interact with a large number of services and APIs on the web
using natural language. In this work, we investigate two methods for Natural
Language Generation (NLG) using a single domain-independent model across a
large number of APIs. First, we propose a schema-guided approach which
conditions the generation on a schema describing the API in natural language.
Our second method investigates the use of a small number of templates, growing
linearly in number of slots, to convey the semantics of the API. To generate
utterances for an arbitrary slot combination, a few simple templates are first
concatenated to give a semantically correct, but possibly incoherent and
ungrammatical utterance. A pre-trained language model is subsequently employed
to rewrite it into coherent, natural sounding text. Through automatic metrics
and human evaluation, we show that our method improves over strong baselines,
is robust to out-of-domain inputs and shows improved sample efficiency.
Related papers
- Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Most Language Models can be Poets too: An AI Writing Assistant and
Constrained Text Generation Studio [0.5097809301149341]
We find that most language models generate compelling text even under significant constraints.
We present a technique for modifying the output of a language model by compositionally applying filter functions to the language models vocabulary.
We also present a Huggingface space web-app presenting this technique called Gadsby.
arXiv Detail & Related papers (2023-06-28T05:10:51Z) - Binding Language Models in Symbolic Languages [146.3027328556881]
Binder is a training-free neural-symbolic framework that maps the task input to a program.
In the parsing stage, Codex is able to identify the part of the task input that cannot be answerable by the original programming language.
In the execution stage, Codex can perform versatile functionalities given proper prompts in the API calls.
arXiv Detail & Related papers (2022-10-06T12:55:17Z) - Training Naturalized Semantic Parsers with Very Little Data [10.709587018625275]
State-of-the-art (SOTA) semantics are seq2seq architectures based on large language models that have been pretrained on vast amounts of text.
Recent work has explored a reformulation of semantic parsing whereby the output sequences are themselves natural language sentences.
We show that this method delivers new SOTA few-shot performance on the Overnight dataset.
arXiv Detail & Related papers (2022-04-29T17:14:54Z) - On the Effectiveness of Pretrained Models for API Learning [8.788509467038743]
Developers frequently use APIs to implement certain functionalities, such as parsing Excel Files, reading and writing text files line by line, etc.
Developers can greatly benefit from automatic API usage sequence generation based on natural language queries for building applications in a faster and cleaner manner.
Existing approaches utilize information retrieval models to search for matching API sequences given a query or use RNN-based encoder-decoder to generate API sequences.
arXiv Detail & Related papers (2022-04-05T20:33:24Z) - WARP: Word-level Adversarial ReProgramming [13.08689221166729]
In many applications it is preferable to tune much smaller sets of parameters, so that the majority of parameters can be shared across multiple tasks.
We present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation.
We show that this approach outperforms other methods with a similar number of trainable parameters on SST-2 and MNLI datasets.
arXiv Detail & Related papers (2021-01-01T00:41:03Z) - Generating Synthetic Data for Task-Oriented Semantic Parsing with
Hierarchical Representations [0.8203855808943658]
In this work, we explore the possibility of generating synthetic data for neural semantic parsing.
Specifically, we first extract masked templates from the existing labeled utterances, and then fine-tune BART to generate synthetic utterances conditioning.
We show the potential of our approach when evaluating on the Facebook TOP dataset for navigation domain.
arXiv Detail & Related papers (2020-11-03T22:55:40Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - N-LTP: An Open-source Neural Language Technology Platform for Chinese [68.58732970171747]
textttN- is an open-source neural language technology platform supporting six fundamental Chinese NLP tasks.
textttN- adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks.
arXiv Detail & Related papers (2020-09-24T11:45:39Z) - Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems [74.8759568242933]
Task-oriented dialogue systems use four connected modules, namely, Natural Language Understanding (NLU), a Dialogue State Tracking (DST), Dialogue Policy (DP) and Natural Language Generation (NLG)
A research challenge is to learn each module with the least amount of samples given the high cost related to the data collection.
We evaluate the priming few-shot ability of language models in the NLU, DP and NLG tasks.
arXiv Detail & Related papers (2020-08-14T08:23:21Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
We present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems.
We develop the SC-GPT model, which is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability.
Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods.
arXiv Detail & Related papers (2020-02-27T18:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.