Representations of Syntax [MASK] Useful: Effects of Constituency and
Dependency Structure in Recursive LSTMs
- URL: http://arxiv.org/abs/2005.00019v1
- Date: Thu, 30 Apr 2020 18:00:06 GMT
- Title: Representations of Syntax [MASK] Useful: Effects of Constituency and
Dependency Structure in Recursive LSTMs
- Authors: Michael A. Lepori, Tal Linzen, and R. Thomas McCoy
- Abstract summary: Sequence-based neural networks show significant sensitivity to syntactic structure, but they still perform less well on syntactic tasks than tree-based networks.
We evaluate which of these two representational schemes more effectively introduces biases for syntactic structure.
We show that a constituency-based network generalizes more robustly than a dependency-based one, and that combining the two types of structure does not yield further improvement.
- Score: 26.983602540576275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence-based neural networks show significant sensitivity to syntactic
structure, but they still perform less well on syntactic tasks than tree-based
networks. Such tree-based networks can be provided with a constituency parse, a
dependency parse, or both. We evaluate which of these two representational
schemes more effectively introduces biases for syntactic structure that
increase performance on the subject-verb agreement prediction task. We find
that a constituency-based network generalizes more robustly than a
dependency-based one, and that combining the two types of structure does not
yield further improvement. Finally, we show that the syntactic robustness of
sequential models can be substantially improved by fine-tuning on a small
amount of constructed data, suggesting that data augmentation is a viable
alternative to explicit constituency structure for imparting the syntactic
biases that sequential models are lacking.
Related papers
- S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis [19.740223755240734]
We propose S$2$GSL, incorporating Segment to Syntactic enhanced Graph Structure Learning for ABSA.
S$2$GSL is featured with a segment-aware semantic graph learning and a syntax-based latent graph learning.
arXiv Detail & Related papers (2024-06-05T03:44:35Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - Better Feature Integration for Named Entity Recognition [30.676768644145]
We propose a simple and robust solution to incorporate both types of features with our Synergized-LSTM (Syn-LSTM)
The results demonstrate that the proposed model achieves better performance than previous approaches while requiring fewer parameters.
arXiv Detail & Related papers (2021-04-12T09:55:06Z) - Syntactic representation learning for neural network based TTS with
syntactic parse tree traversal [49.05471750563229]
We propose a syntactic representation learning method based on syntactic parse tree to automatically utilize the syntactic structure information.
Experimental results demonstrate the effectiveness of our proposed approach.
For sentences with multiple syntactic parse trees, prosodic differences can be clearly perceived from the synthesized speeches.
arXiv Detail & Related papers (2020-12-13T05:52:07Z) - Keyphrase Extraction with Dynamic Graph Convolutional Networks and
Diversified Inference [50.768682650658384]
Keyphrase extraction (KE) aims to summarize a set of phrases that accurately express a concept or a topic covered in a given document.
Recent Sequence-to-Sequence (Seq2Seq) based generative framework is widely used in KE task, and it has obtained competitive performance on various benchmarks.
In this paper, we propose to adopt the Dynamic Graph Convolutional Networks (DGCN) to solve the above two problems simultaneously.
arXiv Detail & Related papers (2020-10-24T08:11:23Z) - High-order Semantic Role Labeling [86.29371274587146]
This paper introduces a high-order graph structure for the neural semantic role labeling model.
It enables the model to explicitly consider not only the isolated predicate-argument pairs but also the interaction between the predicate-argument pairs.
Experimental results on 7 languages of the CoNLL-2009 benchmark show that the high-order structural learning techniques are beneficial to the strong performing SRL models.
arXiv Detail & Related papers (2020-10-09T15:33:54Z) - Exploiting Syntactic Structure for Better Language Modeling: A Syntactic
Distance Approach [78.77265671634454]
We make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called "syntactic distances"
Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
arXiv Detail & Related papers (2020-05-12T15:35:00Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
We evaluate the intermediate outputs of NMNs on NLVR2 and DROP datasets.
We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour.
arXiv Detail & Related papers (2020-05-02T06:50:35Z) - Consistency of Spectral Clustering on Hierarchical Stochastic Block
Models [5.983753938303726]
We study the hierarchy of communities in real-world networks under a generic block model.
We prove the strong consistency of this method under a wide range of model parameters.
Unlike most of existing work, our theory covers multiscale networks where the connection probabilities may differ by orders of magnitude.
arXiv Detail & Related papers (2020-04-30T01:08:59Z) - Discontinuous Constituent Parsing with Pointer Networks [0.34376560669160383]
discontinuous constituent trees are crucial for representing all grammatical phenomena of languages such as German.
Recent advances in dependency parsing have shown that Pointer Networks excel in efficiently parsing syntactic relations between words in a sentence.
We propose a novel neural network architecture that is able to generate the most accurate discontinuous constituent representations.
arXiv Detail & Related papers (2020-02-05T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.