S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis
- URL: http://arxiv.org/abs/2406.02902v2
- Date: Fri, 7 Jun 2024 07:32:50 GMT
- Title: S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis
- Authors: Bingfeng Chen, Qihan Ouyang, Yongqi Luo, Boyan Xu, Ruichu Cai, Zhifeng Hao,
- Abstract summary: We propose S$2$GSL, incorporating Segment to Syntactic enhanced Graph Structure Learning for ABSA.
S$2$GSL is featured with a segment-aware semantic graph learning and a syntax-based latent graph learning.
- Score: 19.740223755240734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous graph-based approaches in Aspect based Sentiment Analysis(ABSA) have demonstrated impressive performance by utilizing graph neural networks and attention mechanisms to learn structures of static dependency trees and dynamic latent trees. However, incorporating both semantic and syntactic information simultaneously within complex global structures can introduce irrelevant contexts and syntactic dependencies during the process of graph structure learning, potentially resulting in inaccurate predictions. In order to address the issues above, we propose S$^2$GSL, incorporating Segment to Syntactic enhanced Graph Structure Learning for ABSA. Specifically,S$^2$GSL is featured with a segment-aware semantic graph learning and a syntax-based latent graph learning enabling the removal of irrelevant contexts and dependencies, respectively. We further propose a self-adaptive aggregation network that facilitates the fusion of two graph learning branches, thereby achieving complementarity across diverse structures. Experimental results on four benchmarks demonstrate the effectiveness of our framework.
Related papers
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - Explainable Representations for Relation Prediction in Knowledge Graphs [0.0]
We propose SEEK, a novel approach for explainable representations to support relation prediction in knowledge graphs.
It is based on identifying relevant shared semantic aspects between entities and learning representations for each subgraph.
We evaluate SEEK on two real-world relation prediction tasks: protein-protein interaction prediction and gene-disease association prediction.
arXiv Detail & Related papers (2023-06-22T06:18:40Z) - Semantic Random Walk for Graph Representation Learning in Attributed
Graphs [2.318473106845779]
We propose a novel semantic graph representation (SGR) method to formulate the joint optimization of the two heterogeneous sources into a common high-order proximity based framework.
Conventional embedding methods that consider high-order topology proximities can then be easily applied to the newly constructed graph to learn the representations of both node and attribute.
The learned attribute embeddings can also effectively support some semantic-oriented inference tasks, helping to reveal the graph's deep semantic.
arXiv Detail & Related papers (2023-05-11T02:35:16Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
Graph Neural Networks (GNNs) are de facto solutions to structural data learning.
Existing graph structure learning (GSL) frameworks still lack robustness and interpretability.
This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree.
arXiv Detail & Related papers (2023-03-17T05:20:24Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.