論文の概要: Context-Aware Wireless Connectivity and Processing Unit Optimization for
IoT Networks
- arxiv url: http://arxiv.org/abs/2005.00407v1
- Date: Thu, 30 Apr 2020 02:18:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 05:49:48.664450
- Title: Context-Aware Wireless Connectivity and Processing Unit Optimization for
IoT Networks
- Title(参考訳): iotネットワークにおけるコンテキストアウェア無線接続と処理ユニット最適化
- Authors: Metin Ozturk, Attai Ibrahim Abubakar, Rao Naveed Bin Rais, Mona Jaber,
Sajjad Hussain, Muhammad Ali Imran
- Abstract要約: 提案手法は, エネルギー消費, 応答時間, セキュリティ, 金銭的コストを共同で最適化することにより, オフロードするデータの割合とともに, 最高の接続・処理ユニットを同時に選択する。
応答時間とセキュリティの観点からIoTデバイスの要件は、デバイスの残りのバッテリレベルとともに入力として捉えられ、開発されたアルゴリズムは最適化されたポリシーを返す。
- 参考スコア(独自算出の注目度): 10.248295944860963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel approach is presented in this work for context-aware connectivity and
processing optimization of Internet of things (IoT) networks. Different from
the state-of-the-art approaches, the proposed approach simultaneously selects
the best connectivity and processing unit (e.g., device, fog, and cloud) along
with the percentage of data to be offloaded by jointly optimizing energy
consumption, response-time, security, and monetary cost. The proposed scheme
employs a reinforcement learning algorithm, and manages to achieve significant
gains compared to deterministic solutions. In particular, the requirements of
IoT devices in terms of response-time and security are taken as inputs along
with the remaining battery level of the devices, and the developed algorithm
returns an optimized policy. The results obtained show that only our method is
able to meet the holistic multi-objective optimisation criteria, albeit, the
benchmark approaches may achieve better results on a particular metric at the
cost of failing to reach the other targets. Thus, the proposed approach is a
device-centric and context-aware solution that accounts for the monetary and
battery constraints.
- Abstract(参考訳): 本研究では,IoT(Internet of Things)ネットワークのコンテキスト対応接続性と処理最適化について,新しいアプローチを提案する。
最先端のアプローチとは異なり、提案手法は、エネルギー消費、応答時間、セキュリティ、および金銭コストを共同で最適化することにより、オフロードされるデータの割合とともに、最高の接続と処理ユニット(例えば、デバイス、霧、雲)を同時に選択する。
提案手法は強化学習アルゴリズムを採用し,決定論的解と比較して有意な成果を得る。
特に、応答時間とセキュリティの観点からIoTデバイスの要件は、デバイスの残りのバッテリレベルとともに入力として捉えられ、開発されたアルゴリズムは最適化されたポリシーを返す。
その結果,本手法は総合的多目的最適化基準を満たすことができるが,ベンチマーク手法は,他の目標に到達できないコストで,特定の指標でより良い結果を得ることができることがわかった。
したがって、提案手法は、金融やバッテリーの制約を考慮し、デバイス中心でコンテキスト対応のソリューションである。
関連論文リスト
- Resource Efficient Asynchronous Federated Learning for Digital Twin Empowered IoT Network [29.895766751146155]
Digital twin(DT)は、IoT(Internet of Things)デバイスのリアルタイムステータスと動的トポロジマッピングを提供する。
我々は,非同期フェデレーション学習(FL)に基づく軽量DT強化IoTネットワークに適した動的リソーススケジューリングアルゴリズムを開発した。
具体的には,エネルギー消費と遅延の両方を包含する多目的関数を最小化する。
論文 参考訳(メタデータ) (2024-08-26T14:28:51Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
本稿では,アグリゲーションエラーを最小限に抑え,選択したデバイス数を最大化する目的で,共同装置の選択とアグリゲーションビームフォーミング設計について検討する。
コスト効率のよい方法でこの問題に取り組むために,ランダムな集合ビームフォーミング方式を提案する。
また, 得られた集計誤差と, デバイス数が大きい場合に選択したデバイス数についても解析を行った。
論文 参考訳(メタデータ) (2024-02-20T23:59:45Z) - Computation Rate Maximization for Wireless Powered Edge Computing With Multi-User Cooperation [10.268239987867453]
本研究では,コンピュータユニットとIoT(Internet of Things)デバイスを備えたハイブリッドアクセスポイントを備えた,無線通信によるモバイルエッジコンピューティングシステムについて考察する。
本稿では,協調クラスタを動的に形成する計算性能を改善するための,新しいマルチユーザ協調方式を提案する。
具体的には、ネットワーク内のすべてのIoTデバイスの重み付け和計算率(WSCR)を最大化する。
論文 参考訳(メタデータ) (2024-01-22T05:22:19Z) - Joint User Association, Interference Cancellation and Power Control for
Multi-IRS Assisted UAV Communications [80.35959154762381]
インテリジェント反射面(IRS)支援無人航空機(UAV)通信は、地上基地局の負荷を低コストで軽減することが期待されている。
既存の研究は主に、複数のIRSではなく単一のIRSの配置とリソース割り当てに焦点を当てている。
我々は,共同IRSユーザアソシエーションのための新しい最適化アルゴリズム,UAVの軌道最適化,逐次干渉キャンセル(SIC)復号命令スケジューリング,電力割り当てを提案する。
論文 参考訳(メタデータ) (2023-12-08T01:57:10Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning [2.3262774900834606]
無線ネットワーク上のフェデレートラーニングは、プライバシ保存モデルトレーニングのために、ネットワークエッジにおけるユビキタスインテリジェンスを活用することによって、データ意識のサービスを可能にする。
我々は、類似した好みのユーザデバイスをグループ化するクラスタ化フェデレーション学習を提案し、各クラスタにパーソナライズされたモデルを提供する。
モデル精度、通信資源割り当て、エネルギー消費を共同で考慮し、精度-コストトレードオフ最適化問題を定式化する。
論文 参考訳(メタデータ) (2022-02-06T07:58:41Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Cost-Effective Federated Learning in Mobile Edge Networks [37.16466118235272]
フェデレートラーニング(FL)は、多くのモバイルデバイスが生データを共有せずに協調的にモデルを学習できる分散ラーニングパラダイムである。
本研究は,モバイルエッジネットワークにおける適応FLの設計手法を解析し,本質的な制御変数を最適に選択し,総コストを最小化する。
我々は,収束関連未知パラメータを学習するために,低コストなサンプリングベースアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-09-12T03:02:24Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。