論文の概要: Secure Deep Graph Generation with Link Differential Privacy
- arxiv url: http://arxiv.org/abs/2005.00455v3
- Date: Sat, 1 May 2021 03:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 00:30:50.870380
- Title: Secure Deep Graph Generation with Link Differential Privacy
- Title(参考訳): リンク差分プライバシーによるセキュアなディープグラフ生成
- Authors: Carl Yang, Haonan Wang, Ke Zhang, Liang Chen, Lichao Sun
- Abstract要約: 我々は、差分プライバシー(DP)フレームワークを利用して、ディープグラフ生成モデルに厳密なプライバシー制約を定式化し、強制する。
特に、リンク再構成に基づくグラフ生成モデルの勾配に適切なノイズを注入することにより、エッジDPを強制する。
提案した DPGGAN モデルでは,グローバル構造を効果的に保存し,個々のリンクのプライバシを厳格に保護したグラフを生成することができる。
- 参考スコア(独自算出の注目度): 32.671503863933616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many data mining and analytical tasks rely on the abstraction of networks
(graphs) to summarize relational structures among individuals (nodes). Since
relational data are often sensitive, we aim to seek effective approaches to
generate utility-preserved yet privacy-protected structured data. In this
paper, we leverage the differential privacy (DP) framework to formulate and
enforce rigorous privacy constraints on deep graph generation models, with a
focus on edge-DP to guarantee individual link privacy. In particular, we
enforce edge-DP by injecting proper noise to the gradients of a link
reconstruction-based graph generation model, while ensuring data utility by
improving structure learning with structure-oriented graph discrimination.
Extensive experiments on two real-world network datasets show that our proposed
DPGGAN model is able to generate graphs with effectively preserved global
structure and rigorously protected individual link privacy.
- Abstract(参考訳): データマイニングや分析タスクの多くは、個人(ノード)間の関係構造を要約するためにネットワーク(グラフ)の抽象化に依存している。
リレーショナルデータはセンシティブなことが多いので,プライバシ保護構造データを生成するための効果的なアプローチを模索する。
本稿では、差分プライバシ(DP)フレームワークを活用し、ディープグラフ生成モデルにおける厳密なプライバシ制約を定式化し、実施する。
特に,リンクリコンストラクションに基づくグラフ生成モデルの勾配に適切なノイズを注入し,構造指向グラフ識別による構造学習の改善によるデータ有効性を確保し,エッジdpを強制する。
2つの実世界のネットワークデータセットに関する広範囲な実験により、提案するdpgganモデルは、グローバル構造を効果的に保存し、個別リンクプライバシを厳格に保護したグラフを生成することができることを示した。
関連論文リスト
- Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
本研究では,ネットワーク構造から生じるプライバシーリスクに対する理解と保護を推し進める。
我々は,ネットワーク構造によるプライバシー漏洩の可能性を評価するための重要なツールとして機能する,新しいグラフプライベート属性推論攻撃を開発した。
攻撃モデルはユーザのプライバシに重大な脅威を与え,グラフデータ公開手法は最適なプライバシとユーティリティのトレードオフを実現する。
論文 参考訳(メタデータ) (2024-07-26T07:40:54Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - Privacy-Preserving Graph Embedding based on Local Differential Privacy [26.164722283887333]
ノードデータのプライバシを保護するために,PrivGEという新たなプライバシ保護グラフ埋め込みフレームワークを導入する。
具体的には,ノードデータを難読化するための LDP 機構を提案し,パーソナライズされた PageRank を近接指標としてノード表現を学習する。
いくつかの実世界のグラフデータセットの実験は、PrivGEがプライバシとユーティリティの最適なバランスを達成していることを示している。
論文 参考訳(メタデータ) (2023-10-17T08:06:08Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
ソーシャルネットワークは、ディープラーニングの技術進歩を伴う異種グラフニューラルネットワーク(HGNN)であると考えられている。
本稿では,HeteDPと呼ばれる差分プライバシー機構に基づく,新しい異種グラフニューラルネットワークのプライバシ保存手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:41:02Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - Gromov-Wasserstein Discrepancy with Local Differential Privacy for
Distributed Structural Graphs [7.4398547397969494]
本稿では,グラフニューラルネットワークから学習したノード埋め込みのGW差分を分析するためのプライバシー保護フレームワークを提案する。
我々の実験は,$varilon$-LDPアルゴリズムによって保証される強力なプライバシー保護により,提案フレームワークがグラフ学習におけるプライバシを保存するだけでなく,GW距離下でのノイズ構造指標も提示することを示した。
論文 参考訳(メタデータ) (2022-02-01T23:32:33Z) - Network Generation with Differential Privacy [4.297070083645049]
我々は、プライベート情報を含む実世界のグラフのプライベートな合成版を生成する問題について考察する。
本稿では,エッジ差分プライバシーを維持しつつ,実世界のネットワーク特性を再現できる生成モデルを提案する。
論文 参考訳(メタデータ) (2021-11-17T13:07:09Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。