Robust Deep Learning as Optimal Control: Insights and Convergence
Guarantees
- URL: http://arxiv.org/abs/2005.00616v1
- Date: Fri, 1 May 2020 21:26:38 GMT
- Title: Robust Deep Learning as Optimal Control: Insights and Convergence
Guarantees
- Authors: Jacob H. Seidman, Mahyar Fazlyab, Victor M. Preciado, George J. Pappas
- Abstract summary: adversarial examples during training is a popular defense mechanism against adversarial attacks.
By interpreting the min-max problem as an optimal control problem, it has been shown that one can exploit the compositional structure of neural networks.
We provide the first convergence analysis of this adversarial training algorithm by combining techniques from robust optimal control and inexact methods in optimization.
- Score: 19.28405674700399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fragility of deep neural networks to adversarially-chosen inputs has
motivated the need to revisit deep learning algorithms. Including adversarial
examples during training is a popular defense mechanism against adversarial
attacks. This mechanism can be formulated as a min-max optimization problem,
where the adversary seeks to maximize the loss function using an iterative
first-order algorithm while the learner attempts to minimize it. However,
finding adversarial examples in this way causes excessive computational
overhead during training. By interpreting the min-max problem as an optimal
control problem, it has recently been shown that one can exploit the
compositional structure of neural networks in the optimization problem to
improve the training time significantly. In this paper, we provide the first
convergence analysis of this adversarial training algorithm by combining
techniques from robust optimal control and inexact oracle methods in
optimization. Our analysis sheds light on how the hyperparameters of the
algorithm affect the its stability and convergence. We support our insights
with experiments on a robust classification problem.
Related papers
- Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
We propose leveraging recent advancements in neural reasoning to improve the learning of CO problems.
We suggest pre-training our neural model on relevant algorithms before training it on CO instances.
Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.
arXiv Detail & Related papers (2023-05-18T13:59:02Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Federated Learning with a Sampling Algorithm under Isoperimetry [9.990687944474738]
Federated learning uses a set of techniques to efficiently distribute the training of a machine learning algorithm across several devices.
We propose a communication-efficient variant of Langevinvin's sample a posteriori.
arXiv Detail & Related papers (2022-06-02T08:19:03Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - On the Convergence and Robustness of Adversarial Training [134.25999006326916]
Adrial training with Project Gradient Decent (PGD) is amongst the most effective.
We propose a textitdynamic training strategy to increase the convergence quality of the generated adversarial examples.
Our theoretical and empirical results show the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-12-15T17:54:08Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
We propose a multiobjective perspective on the training of neural networks by treating its prediction accuracy and the network complexity as two individual objective functions.
Preliminary numerical results on exemplary convolutional neural networks confirm that large reductions in the complexity of neural networks with neglibile loss of accuracy are possible.
arXiv Detail & Related papers (2020-08-31T13:28:03Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms.
We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting, and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses.
arXiv Detail & Related papers (2020-07-01T21:00:32Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.