論文の概要: Probing Contextual Language Models for Common Ground with Visual
Representations
- arxiv url: http://arxiv.org/abs/2005.00619v5
- Date: Tue, 13 Apr 2021 16:02:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 22:41:58.193995
- Title: Probing Contextual Language Models for Common Ground with Visual
Representations
- Title(参考訳): 視覚表現を用いた共通基盤のための文脈言語モデル探索
- Authors: Gabriel Ilharco, Rowan Zellers, Ali Farhadi, Hannaneh Hajishirzi
- Abstract要約: 我々は、マッチングと非マッチングの視覚表現を区別する上で、テキストのみの表現がいかに効果的かを評価するための探索モデルを設計する。
以上の結果から,言語表現だけでは,適切な対象カテゴリから画像パッチを検索する強力な信号が得られることがわかった。
視覚的に接地された言語モデルは、例えば検索においてテキストのみの言語モデルよりわずかに優れているが、人間よりもはるかに低い。
- 参考スコア(独自算出の注目度): 76.05769268286038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of large-scale contextual language models has attracted great
interest in probing what is encoded in their representations. In this work, we
consider a new question: to what extent contextual representations of concrete
nouns are aligned with corresponding visual representations? We design a
probing model that evaluates how effective are text-only representations in
distinguishing between matching and non-matching visual representations. Our
findings show that language representations alone provide a strong signal for
retrieving image patches from the correct object categories. Moreover, they are
effective in retrieving specific instances of image patches; textual context
plays an important role in this process. Visually grounded language models
slightly outperform text-only language models in instance retrieval, but
greatly under-perform humans. We hope our analyses inspire future research in
understanding and improving the visual capabilities of language models.
- Abstract(参考訳): 大規模文脈言語モデルの成功は、その表現にエンコードされているものを探索することに大きな関心を集めている。
本研究では,具体的な名詞の文脈表現が対応する視覚表現とどの程度一致しているかという,新しい問いについて考察する。
マッチング表現と非マッチング表現の区別において,テキストのみ表現がいかに効果的かを評価する探索モデルを設計した。
その結果、言語表現だけでは、正しいオブジェクトカテゴリから画像パッチを取得するための強い信号が得られることがわかった。
さらに、画像パッチの特定のインスタンスを検索するのに有効であり、このプロセスではテキストコンテキストが重要な役割を果たす。
視覚的な接地された言語モデルは、インスタンス検索においてテキストのみの言語モデルよりもわずかに優れています。
言語モデルの視覚的能力の理解と改善に関する今後の研究を期待する。
関連論文リスト
- Autoregressive Pre-Training on Pixels and Texts [35.82610192457444]
文書画像とテキストの両方で事前学習された自己回帰フレームワークを用いて、視覚的・テキスト的両言語の二重モードについて検討する。
本手法はマルチモーダル・トレーニング・ストラテジーを用いて,次のパッチ予測による視覚データと,次のトークン予測による回帰ヘッドおよび/またはテキストデータを利用する。
視覚データのみを訓練した一方向画素モデルでは,複数の言語理解タスクにおける最先端の双方向モデルに匹敵する結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-04-16T16:36:50Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
画像とテキストとのマッチングを訓練した大規模視覚言語モデル(VLM)では,空間的関係の微妙な理解が欠如していることが示されている。
本稿では,空間的節の認識とランク付けのための,よりきめ細かな構成的アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-18T18:58:54Z) - Learning the Visualness of Text Using Large Vision-Language Models [42.75864384249245]
視覚的テキストは人の心の中のイメージを誘発するが、視覚的でないテキストはそれを起こさない。
テキスト内の視覚を自動的に検出する手法により、テキスト・ツー・イメージ検索と生成モデルにより、関連する画像でテキストを拡張できる。
我々は,3,620の英語文のデータセットと,複数のアノテータによって提供されるその視覚性スコアをキュレートする。
論文 参考訳(メタデータ) (2023-05-11T17:45:16Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
画像内の物体の位置を視覚言語モデルで理解し,画像の視覚的関連部分をグループ化する方法について述べる。
本稿では,意味情報と空間情報の両方を一意に学習するモデルとして,最小限の修正を提案する。
論文 参考訳(メタデータ) (2022-10-18T17:01:35Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
本稿では,視覚情報と言語情報を結合として見る視覚言語モデリングネットワーク(VisionLAN)を提案する。
VisionLANは39%のスピード向上を実現し、正確な認識のための視覚的特徴を高めるために言語情報を適応的に検討する。
論文 参考訳(メタデータ) (2021-08-22T07:56:24Z) - Learning to Represent Image and Text with Denotation Graph [32.417311523031195]
本稿では,画像とテキスト間の暗黙的・視覚的接地表現の集合から学習表現を提案する。
得られた構造的関係を利用して,最先端のマルチモーダル学習モデルをさらに改良できることを示す。
論文 参考訳(メタデータ) (2020-10-06T18:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。