論文の概要: Using Noisy Self-Reports to Predict Twitter User Demographics
- arxiv url: http://arxiv.org/abs/2005.00635v2
- Date: Sun, 11 Jul 2021 08:02:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 00:05:31.576705
- Title: Using Noisy Self-Reports to Predict Twitter User Demographics
- Title(参考訳): 騒がしい自己報告を使ってtwitterユーザーの人口統計を予測
- Authors: Zach Wood-Doughty, Paiheng Xu, Xiao Liu, Mark Dredze
- Abstract要約: 本稿では,Twitterのプロフィールから人種・民族の自己申告を識別する手法を提案する。
自動監視に固有の誤りにもかかわらず、金の標準自己報告調査データに基づいて、優れた性能のモデルを作成する。
- 参考スコア(独自算出の注目度): 17.288865276460527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational social science studies often contextualize content analysis
within standard demographics. Since demographics are unavailable on many social
media platforms (e.g. Twitter) numerous studies have inferred demographics
automatically. Despite many studies presenting proof of concept inference of
race and ethnicity, training of practical systems remains elusive since there
are few annotated datasets. Existing datasets are small, inaccurate, or fail to
cover the four most common racial and ethnic groups in the United States. We
present a method to identify self-reports of race and ethnicity from Twitter
profile descriptions. Despite errors inherent in automated supervision, we
produce models with good performance when measured on gold standard self-report
survey data. The result is a reproducible method for creating large-scale
training resources for race and ethnicity.
- Abstract(参考訳): 計算社会科学の研究は、しばしば標準的な人口統計学内のコンテンツ分析を文脈化する。
人口統計は多くのソーシャルメディアプラットフォーム(例えばtwitter)では利用できないため、多くの研究が自動的に人口統計を推測している。
多くの研究が人種と民族の概念推論の証明を提示しているが、注釈付きデータセットがほとんどないため、実践的なシステムの訓練は明らかになっていない。
既存のデータセットは小さく、不正確で、アメリカで最も一般的な4つの人種や民族をカバーできない。
本稿では,twitterのプロフィールから人種と民族の自己報告を識別する手法を提案する。
自動監視に固有の誤りにもかかわらず、金の標準自己報告調査データに基づいて、優れた性能のモデルを作成する。
その結果は、人種や民族のための大規模な訓練資源を作成する再現可能な方法である。
関連論文リスト
- Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFairは、言語モデルにおける社会的バイアスに対処する新しいアプローチである。
偏見を緩和するために、原型的人口統計テキストを活用し、微調整プロセス中に正規化用語を取り入れる。
論文 参考訳(メタデータ) (2024-03-14T15:58:36Z) - Aligning with Whom? Large Language Models Have Gender and Racial Biases
in Subjective NLP Tasks [15.015148115215315]
我々は4つのポピュラーな大言語モデル(LLM)の実験を行い、集団差と潜在的なバイアスを理解する能力について、丁寧さと不快さの予測について検討する。
どちらのタスクでも、モデル予測は白人と女性の参加者のラベルに近いことが分かりました。
より具体的には、"ブラック"と"アジア"個人の観点から反応するよう促された場合、モデルは、対応するグループからのスコアだけでなく、全体的なスコアを予測する際のパフォーマンスを低下させる。
論文 参考訳(メタデータ) (2023-11-16T10:02:24Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
本稿では,人的専門家と生成言語モデルによって共同で構築された100万以上の質問からなる中国語バイアスベンチマークデータセットを提案する。
データセットのテストインスタンスは、手作業による厳格な品質管理を備えた3K以上の高品質テンプレートから自動的に抽出される。
大規模な実験により、データセットがモデルバイアスを検出することの有効性が実証された。
論文 参考訳(メタデータ) (2023-06-28T14:14:44Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
この研究は、言語モデルにおけるバイアスの欠陥を使用して、6つの異なるオンラインコミュニティのバイアスを調査します。
得られたモデルのバイアスは、異なる人口層を持つモデルに促し、これらの世代における感情と毒性の値を比較することで評価される。
この作業は、トレーニングデータからバイアスがどの程度容易に吸収されるかを確認するだけでなく、さまざまなデータセットやコミュニティのバイアスを特定し比較するためのスケーラブルな方法も提示する。
論文 参考訳(メタデータ) (2023-06-04T08:09:26Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
画像キャプションタスクのためのモデルに基づく評価指標において、性別バイアスの体系的研究を行う。
偏りのある世代と偏りのない世代を区別できないことを含む、これらの偏りのあるメトリクスを使用することによる負の結果を実証する。
人間の判断と相関を損なうことなく、測定バイアスを緩和する簡便で効果的な方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T04:27:40Z) - Harnessing the Power of Text-image Contrastive Models for Automatic
Detection of Online Misinformation [50.46219766161111]
誤情報識別の領域における構成的学習を探求する自己学習モデルを構築した。
本モデルでは、トレーニングデータが不十分な場合、非マッチング画像-テキストペア検出の優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-19T02:53:59Z) - Metrics for Dataset Demographic Bias: A Case Study on Facial Expression Recognition [4.336779198334903]
人口統計バイアスの最も顕著な種類は、データセットにおける人口統計群の表現における統計的不均衡である。
我々はこれらの指標を分類するための分類法を開発し、適切な指標を選択するための実践的なガイドを提供する。
この論文は、データセットバイアスを緩和し、AIモデルの公正性と正確性を改善するために、AIと関連する分野の研究者に貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-28T11:04:18Z) - BLIND: Bias Removal With No Demographics [29.16221451643288]
我々は、データセットの人口統計学の事前知識のないバイアス除去手法であるBLINDを紹介する。
下流タスクでモデルをトレーニングしている間、BLINDは、メインモデルの成功を予測する補助モデルを使用してバイアス付きサンプルを検出し、トレーニングプロセス中にこれらのサンプルをダウンウェイトする。
感情分類と職業分類タスクにおける人種的および性別的偏見による実験は、BLINDがコストのかかる人口統計学的アノテーションプロセスに頼ることなく社会的偏見を緩和することを示した。
論文 参考訳(メタデータ) (2022-12-20T18:59:42Z) - Detecting Unintended Social Bias in Toxic Language Datasets [32.724030288421474]
本稿では,既存のKaggleコンペティションのデータセットであるJigsaw Unintended Bias in Toxicity Classificationから算出した新しいデータセットであるToxicBiasを紹介する。
データセットには、5つの異なるバイアスカテゴリ、viz.、性、人種/民族性、宗教、政治的、LGBTQに注釈付けされたインスタンスが含まれている。
得られたデータセットを用いてトランスフォーマーベースモデルをトレーニングし、バイアス識別、ターゲット生成、バイアス含意に関するベースライン性能を報告する。
論文 参考訳(メタデータ) (2022-10-21T06:50:12Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - One Label, One Billion Faces: Usage and Consistency of Racial Categories
in Computer Vision [75.82110684355979]
顔画像の分類的人種ラベルを提供するコンピュータビジョンデータセットによって符号化された人種システムについて検討する。
各データセットは、名目上等価な人種分類にもかかわらず、かなりユニークな人種体系をコードしている。
我々は、人種的カテゴリーがステレオタイプを符号化し、非整合性からステレオタイプへの分類から民族集団を除外する証拠を見出した。
論文 参考訳(メタデータ) (2021-02-03T22:50:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。