Large-scale Uncertainty Estimation and Its Application in Revenue
Forecast of SMEs
- URL: http://arxiv.org/abs/2005.00718v1
- Date: Sat, 2 May 2020 06:17:44 GMT
- Title: Large-scale Uncertainty Estimation and Its Application in Revenue
Forecast of SMEs
- Authors: Zebang Zhang, Kui Zhao, Kai Huang, Quanhui Jia, Yanming Fang, Quan Yu
- Abstract summary: The economic and banking importance of the small and medium enterprise (SME) sector is well recognized in contemporary society.
It is very beneficial to construct a reliable revenue forecasting model.
We propose a Scalable Natural Gradient Boosting Machines that is simple to implement, readily parallelizable, interpretable and yields high-quality predictive uncertainty estimates.
- Score: 10.367755705236249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The economic and banking importance of the small and medium enterprise (SME)
sector is well recognized in contemporary society. Business credit loans are
very important for the operation of SMEs, and the revenue is a key indicator of
credit limit management. Therefore, it is very beneficial to construct a
reliable revenue forecasting model. If the uncertainty of an enterprise's
revenue forecasting can be estimated, a more proper credit limit can be
granted. Natural gradient boosting approach, which estimates the uncertainty of
prediction by a multi-parameter boosting algorithm based on the natural
gradient. However, its original implementation is not easy to scale into big
data scenarios, and computationally expensive compared to state-of-the-art
tree-based models (such as XGBoost). In this paper, we propose a Scalable
Natural Gradient Boosting Machines that is simple to implement, readily
parallelizable, interpretable and yields high-quality predictive uncertainty
estimates. According to the characteristics of revenue distribution, we derive
an uncertainty quantification function. We demonstrate that our method can
distinguish between samples that are accurate and inaccurate on revenue
forecasting of SMEs. What's more, interpretability can be naturally obtained
from the model, satisfying the financial needs.
Related papers
- Quantifying Prediction Consistency Under Model Multiplicity in Tabular LLMs [10.494477811252034]
Fine-tuning large language models can lead to textitfine-tuning multiplicity, where equally well-performing models make conflicting predictions on the same inputs.
This raises critical concerns about the robustness and reliability of Tabular LLMs.
This work proposes a novel metric to quantify the robustness of individual predictions without expensive model retraining.
arXiv Detail & Related papers (2024-07-04T22:22:09Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - BIRD: A Trustworthy Bayesian Inference Framework for Large Language Models [52.46248487458641]
Predictive models often need to work with incomplete information in real-world tasks.
Current large language models (LLM) are insufficient for such accurate estimations.
We propose BIRD, a novel probabilistic inference framework.
arXiv Detail & Related papers (2024-04-18T20:17:23Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Predictive AI for SME and Large Enterprise Financial Performance
Management [0.0]
I introduce a new set of financial and macroeconomic ratios that supplement standard ratios of Balance Sheet and Income Statement.
I also provide a set of supervised learning models (ML Regressors and Neural Networks) and Bayesian models to predict company performance.
I conclude that the new proposed variables improve model accuracy when used in tandem with standard industry ratios.
arXiv Detail & Related papers (2023-09-22T11:04:32Z) - Model-free generalized fiducial inference [0.0]
I propose and develop ideas for a model-free statistical framework for imprecise probabilistic prediction inference.
This framework facilitates uncertainty quantification in the form of prediction sets that offer finite sample control of type 1 errors.
I consider the theoretical and empirical properties of a precise probabilistic approximation to the model-free imprecise framework.
arXiv Detail & Related papers (2023-07-24T01:58:48Z) - Financial Distress Prediction For Small And Medium Enterprises Using
Machine Learning Techniques [5.301137510638804]
Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures.
However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity.
We propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine.
arXiv Detail & Related papers (2023-02-23T15:58:30Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.