Cycles of Thought: Measuring LLM Confidence through Stable Explanations
- URL: http://arxiv.org/abs/2406.03441v1
- Date: Wed, 5 Jun 2024 16:35:30 GMT
- Title: Cycles of Thought: Measuring LLM Confidence through Stable Explanations
- Authors: Evan Becker, Stefano Soatto,
- Abstract summary: Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
- Score: 53.15438489398938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many high-risk machine learning applications it is essential for a model to indicate when it is uncertain about a prediction. While large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, their overconfidence in incorrect responses is still a well-documented failure mode. Traditional methods for ML uncertainty quantification can be difficult to directly adapt to LLMs due to the computational cost of implementation and closed-source nature of many models. A variety of black-box methods have recently been proposed, but these often rely on heuristics such as self-verbalized confidence. We instead propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer. While utilizing explanations is not a new idea in and of itself, by interpreting each possible model+explanation pair as a test-time classifier we can calculate a posterior answer distribution over the most likely of these classifiers. We demonstrate how a specific instance of this framework using explanation entailment as our classifier likelihood improves confidence score metrics (in particular AURC and AUROC) over baselines across five different datasets. We believe these results indicate that our framework is both a well-principled and effective way of quantifying uncertainty in LLMs.
Related papers
- Quantifying Prediction Consistency Under Model Multiplicity in Tabular LLMs [10.494477811252034]
Fine-tuning large language models can lead to textitfine-tuning multiplicity, where equally well-performing models make conflicting predictions on the same inputs.
This raises critical concerns about the robustness and reliability of Tabular LLMs.
This work proposes a novel metric to quantify the robustness of individual predictions without expensive model retraining.
arXiv Detail & Related papers (2024-07-04T22:22:09Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCH is a benchmark for evaluating large language models.
It includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities.
We also evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding.
arXiv Detail & Related papers (2024-06-18T16:50:38Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - CSS: Contrastive Semantic Similarity for Uncertainty Quantification of LLMs [1.515687944002438]
We propose Contrastive Semantic Similarity, a module to obtain similarity features for measuring uncertainty for text pairs.
We conduct extensive experiments with three large language models (LLMs) on several benchmark question-answering datasets.
Results show that our proposed method performs better in estimating reliable responses of LLMs than comparable baselines.
arXiv Detail & Related papers (2024-06-05T11:35:44Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models [37.63939774027709]
Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities.
We propose and compare several confidence/uncertainty measures, applying them to *selective NLG* where unreliable results could either be ignored or yielded for further assessment.
Results reveal that a simple measure for the semantic dispersion can be a reliable predictor of the quality of LLM responses.
arXiv Detail & Related papers (2023-05-30T16:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.