論文の概要: Enhancing network forensics with particle swarm and deep learning: The
particle deep framework
- arxiv url: http://arxiv.org/abs/2005.00722v1
- Date: Sat, 2 May 2020 06:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 12:43:45.776009
- Title: Enhancing network forensics with particle swarm and deep learning: The
particle deep framework
- Title(参考訳): particle swarmとdeep learningによるネットワーク科学の強化: particle deep framework
- Authors: Nickolaos Koroniotis, Nour Moustafa
- Abstract要約: 自動化と生産性への影響により、IoTスマートなものの人気が高まっている。
IoTデバイスは、確立された新しいIoT固有の攻撃ベクタの両方に脆弱性があることが証明されている。
本稿では,Particle Deep Frameworkを利用したIoTネットワークのための新しいネットワーク法医学フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.797216015572358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The popularity of IoT smart things is rising, due to the automation they
provide and its effects on productivity. However, it has been proven that IoT
devices are vulnerable to both well established and new IoT-specific attack
vectors. In this paper, we propose the Particle Deep Framework, a new network
forensic framework for IoT networks that utilised Particle Swarm Optimisation
to tune the hyperparameters of a deep MLP model and improve its performance.
The PDF is trained and validated using Bot-IoT dataset, a contemporary
network-traffic dataset that combines normal IoT and non-IoT traffic, with well
known botnet-related attacks. Through experimentation, we show that the
performance of a deep MLP model is vastly improved, achieving an accuracy of
99.9% and false alarm rate of close to 0%.
- Abstract(参考訳): iotスマートモノの人気は、提供される自動化と生産性への影響によって高まっている。
しかしながら、IoTデバイスは、確立された新しいIoT固有の攻撃ベクトルの両方に対して脆弱であることが証明されている。
本稿では,深層MLPモデルのハイパーパラメータを調整し,その性能を向上させるためにParticle Swarm Optimisationを利用した,IoTネットワークのための新しいネットワーク法医学フレームワークであるParticle Deep Frameworkを提案する。
PDFは、通常のIoTと非IoTトラフィックとよく知られたボットネット関連の攻撃を組み合わせた、現代のネットワークトラフィックデータセットであるBot-IoTデータセットを使用して、トレーニングされ、検証されている。
実験により,深部MLPモデルの性能が大幅に向上し,99.9%の精度と誤警報率0%に近い精度が得られた。
関連論文リスト
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Give and Take: Federated Transfer Learning for Industrial IoT Network
Intrusion Detection [3.7498611358320733]
IIoTネットワーク侵入検出のためのフェデレートトランスファーラーニング(FTL)手法を提案する。
本研究の一環として,FTLの実行の中心となる組み合わせ型ニューラルネットワークを提案する。
結果は、IIoTクライアントとサーバの両方のイテレーション間のFTLセットアップのパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-10-11T10:11:54Z) - Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments [8.690178186919635]
IoT(Internet of Things)アプリケーションは、機密データを収集および転送することができる。
ハックされたIoTデバイスを検出する新しい方法を開発する必要がある。
本稿では,Hhson Hawks Optimization(HHO)とRandom Weight Network(RWN)に基づく特徴選択(FS)モデルを提案し,IoTボットネット攻撃を検出する。
論文 参考訳(メタデータ) (2023-02-20T09:38:12Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - InstantNet: Automated Generation and Deployment of Instantaneously
Switchable-Precision Networks [65.78061366594106]
可変ビット幅で動作する即時切替可能精度ネットワークを自動生成・展開するInstantNetを提案する。
実験では、提案されたInstantNetは最先端の設計を一貫して上回っている。
論文 参考訳(メタデータ) (2021-04-22T04:07:43Z) - Clustering Algorithm to Detect Adversaries in Federated Learning [0.6091702876917281]
本稿では,クラスタリングアルゴリズムの助けを借りて敵を検出する手法を提案する。
提案手法では,クライアント側からの処理能力は必要とせず,帯域幅の超過は不要である。
我々のアプローチは、40%の敵が存在する場合でも、グローバルモデルの精度を99%まで向上させることに成功した。
論文 参考訳(メタデータ) (2021-02-22T06:49:59Z) - Detecting Botnet Attacks in IoT Environments: An Optimized Machine
Learning Approach [8.641714871787595]
機械学習(ML)は、IoTデバイスやネットワークで生成され利用可能な大量のデータのために、潜在的なソリューションの1つとして浮上しました。
本稿では,IoTデバイスに対する攻撃を効果的かつ効率的に検出するMLベースのフレームワークを提案する。
実験の結果,提案フレームワークは高い検出精度,精度,リコール,Fスコアを有することがわかった。
論文 参考訳(メタデータ) (2020-12-16T16:39:55Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。