Enhancing network forensics with particle swarm and deep learning: The
particle deep framework
- URL: http://arxiv.org/abs/2005.00722v1
- Date: Sat, 2 May 2020 06:39:33 GMT
- Title: Enhancing network forensics with particle swarm and deep learning: The
particle deep framework
- Authors: Nickolaos Koroniotis, Nour Moustafa
- Abstract summary: The popularity of IoT smart things is rising, due to the automation they provide and its effects on productivity.
It has been proven that IoT devices are vulnerable to both well established and new IoT-specific attack vectors.
In this paper, we propose a new network forensic framework for IoT networks that utilised Particle Deep Framework.
- Score: 4.797216015572358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The popularity of IoT smart things is rising, due to the automation they
provide and its effects on productivity. However, it has been proven that IoT
devices are vulnerable to both well established and new IoT-specific attack
vectors. In this paper, we propose the Particle Deep Framework, a new network
forensic framework for IoT networks that utilised Particle Swarm Optimisation
to tune the hyperparameters of a deep MLP model and improve its performance.
The PDF is trained and validated using Bot-IoT dataset, a contemporary
network-traffic dataset that combines normal IoT and non-IoT traffic, with well
known botnet-related attacks. Through experimentation, we show that the
performance of a deep MLP model is vastly improved, achieving an accuracy of
99.9% and false alarm rate of close to 0%.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Give and Take: Federated Transfer Learning for Industrial IoT Network
Intrusion Detection [3.7498611358320733]
We propose a federated transfer learning (FTL) approach to perform IIoT network intrusion detection.
As part of the research, we also propose a combinational neural network as the centerpiece for performing FTL.
Results showcase high performance for the FTL setup between iterations on both the IIoT clients and the server.
arXiv Detail & Related papers (2023-10-11T10:11:54Z) - Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments [8.690178186919635]
Internet of Things (IoT) applications can collect and transfer sensitive data.
It is necessary to develop new methods to detect hacked IoT devices.
This paper proposes a Feature Selection (FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network (RWN) to detect IoT botnet attacks.
arXiv Detail & Related papers (2023-02-20T09:38:12Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - InstantNet: Automated Generation and Deployment of Instantaneously
Switchable-Precision Networks [65.78061366594106]
We propose InstantNet to automatically generate and deploy instantaneously switchable-precision networks which operate at variable bit-widths.
In experiments, the proposed InstantNet consistently outperforms state-of-the-art designs.
arXiv Detail & Related papers (2021-04-22T04:07:43Z) - Clustering Algorithm to Detect Adversaries in Federated Learning [0.6091702876917281]
In this paper, we have proposed an approach that detects the adversaries with the help of a clustering algorithm.
Our proposed gradient filtration approach does not require any processing power from the client-side and does not use excessive bandwidth.
Our approach has been very successful in boosting the global model accuracy, up to 99% even in the presence of 40% adversaries.
arXiv Detail & Related papers (2021-02-22T06:49:59Z) - Detecting Botnet Attacks in IoT Environments: An Optimized Machine
Learning Approach [8.641714871787595]
Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks.
This paper proposes an optimized ML-based framework to detect attacks on IoT devices in an effective and efficient manner.
Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score.
arXiv Detail & Related papers (2020-12-16T16:39:55Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.