論文の概要: A Simple Language Model for Task-Oriented Dialogue
- arxiv url: http://arxiv.org/abs/2005.00796v4
- Date: Tue, 12 Apr 2022 18:00:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 12:34:46.465594
- Title: A Simple Language Model for Task-Oriented Dialogue
- Title(参考訳): タスク指向対話のための簡易言語モデル
- Authors: Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, Richard
Socher
- Abstract要約: SimpleTODはタスク指向対話に対する単純なアプローチであり、すべてのサブタスクのリキャストで訓練された単一因果言語モデルを単一シーケンス予測問題として利用する。
これによりSimpleTODは、事前訓練されたオープンドメイン、GPT-2のような因果言語モデルからのトランスファー学習を完全に活用できる。
- 参考スコア(独自算出の注目度): 61.84084939472287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented dialogue is often decomposed into three tasks: understanding
user input, deciding actions, and generating a response. While such
decomposition might suggest a dedicated model for each sub-task, we find a
simple, unified approach leads to state-of-the-art performance on the MultiWOZ
dataset. SimpleTOD is a simple approach to task-oriented dialogue that uses a
single, causal language model trained on all sub-tasks recast as a single
sequence prediction problem. This allows SimpleTOD to fully leverage transfer
learning from pre-trained, open domain, causal language models such as GPT-2.
SimpleTOD improves over the prior state-of-the-art in joint goal accuracy for
dialogue state tracking, and our analysis reveals robustness to noisy
annotations in this setting. SimpleTOD also improves the main metrics used to
evaluate action decisions and response generation in an end-to-end setting:
inform rate by 8.1 points, success rate by 9.7 points, and combined score by
7.2 points.
- Abstract(参考訳): タスク指向の対話は、ユーザの入力の理解、アクションの決定、応答の生成という3つのタスクに分解されることが多い。
このような分解はサブタスクごとに専用モデルを提案するかもしれないが、単純な統一的なアプローチがマルチウォズデータセットで最先端のパフォーマンスをもたらすことを見出している。
SimpleTODはタスク指向対話に対する単純なアプローチであり、すべてのサブタスクのリキャストで訓練された単一因果言語モデルを単一シーケンス予測問題として利用する。
これによりSimpleTODは、事前訓練されたオープンドメイン、GPT-2のような因果言語モデルからのトランスファー学習を完全に活用できる。
SimpleTODは,対話状態追跡における従来の目標精度よりも向上し,この設定におけるノイズの多いアノテーションに対するロバスト性を明らかにする。
simpletodはまた、エンド・ツー・エンドの設定で行動決定と応答生成を評価するために使われる主要な指標であるインフォメーション率を8.1ポイント、成功率を9.7ポイント、合計スコアを7.2ポイント改善した。
関連論文リスト
- SimpleMTOD: A Simple Language Model for Multimodal Task-Oriented
Dialogue with Symbolic Scene Representation [2.4469484645516837]
SimpleMTODは、シーケンス予測タスクとしてマルチモーダルタスク指向対話でいくつかのサブタスクをリキャストする。
シーン内のオブジェクトに対して、ローカルトークンと非ローカライズトークンの両方を導入します。
このモデルは、分類ヘッドのようなタスク固有のアーキテクチャ変更に依存しない。
論文 参考訳(メタデータ) (2023-07-10T21:16:46Z) - OPAL: Ontology-Aware Pretrained Language Model for End-to-End
Task-Oriented Dialogue [40.62090743056549]
本稿では、エンドツーエンドタスク指向対話(TOD)のためのオントロジー対応事前学習言語モデル(OPAL)を提案する。
チャット型対話モデルとは異なり、タスク指向対話モデルは少なくとも2つのタスク固有モジュールを満たす:対話状態トラッカー(DST)と応答生成器(RG)。
論文 参考訳(メタデータ) (2022-09-10T04:38:27Z) - Context-Aware Language Modeling for Goal-Oriented Dialogue Systems [84.65707332816353]
我々は、部分的に観察されたマルコフ決定過程としてゴール指向対話を定式化する。
目的を意識して言語モデルを微調整する,シンプルで効果的な手法を考案する。
本研究では,AirDialogue を用いた実践的なフライト予約タスクについて評価する。
論文 参考訳(メタデータ) (2022-04-18T17:23:11Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
本稿では,DSTC-10の音声対話課題における知識ベースタスク指向対話モデリングのための一般化モデルの構築について述べる。
我々は,人工誤り注入やラウンドトリップ音声変換など,手書きデータに対する広範なデータ拡張戦略を採用している。
本手法は, 客観的評価では3位, 最終公式評価では2位である。
論文 参考訳(メタデータ) (2022-03-08T12:26:57Z) - Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System [26.837972034630003]
PPTODはタスク指向対話のための統一的なプラグアンドプレイモデルである。
エンド・ツー・エンドの対話モデル、対話状態追跡、意図分類を含む3つのベンチマークTODタスクにおいて、我々のモデルを広範囲にテストする。
論文 参考訳(メタデータ) (2021-09-29T22:02:18Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
我々はraddleベンチマーク、コーパスのコレクション、および様々なドメインのモデルのパフォーマンスを評価するためのツールを紹介します。
RADDLEは強力な一般化能力を持つモデルを好んで奨励するように設計されている。
先行学習と微調整に基づく最近の最先端システムの評価を行い,異種ダイアログコーパスに基づく基礎的な事前学習が,ドメインごとの個別モデルをトレーニングするよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-29T08:58:49Z) - DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented
Dialogue [17.729711165119472]
本研究では,4つの自然言語理解タスクをカバーする7つのタスク指向対話データセットからなる公開ベンチマークであるDialoGLUE(Dialogue Language Understanding Evaluation)を紹介する。
我々は、いくつかの強力なベースラインモデルをリリースし、バニラBERTアーキテクチャの性能改善と、7つのタスクのうち5つの最先端の結果を示します。
DialoGLUEベンチマーク、ベースライン手法、評価スクリプトを通じて、我々はより汎用的なタスク指向対話モデルを開発する目標に向けて前進したいと考えている。
論文 参考訳(メタデータ) (2020-09-28T18:36:23Z) - Modeling Long Context for Task-Oriented Dialogue State Generation [51.044300192906995]
本稿では,シンプルで効果的な発話タグ付け手法と双方向言語モデルを用いたマルチタスク学習モデルを提案する。
提案手法は,入力対話コンテキストシーケンスが長い場合に,ベースラインの性能が著しく低下する,という問題を解決する。
本実験では,MultiWOZ 2.0データセットにおいて,ベースラインに対して7.03%の相対的改善を実現し,新しい最先端のジョイントゴール精度を52.04%に設定した。
論文 参考訳(メタデータ) (2020-04-29T11:02:25Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。