Towards Faithful Neural Table-to-Text Generation with Content-Matching
Constraints
- URL: http://arxiv.org/abs/2005.00969v1
- Date: Sun, 3 May 2020 02:54:26 GMT
- Title: Towards Faithful Neural Table-to-Text Generation with Content-Matching
Constraints
- Authors: Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu, Changyou Chen
- Abstract summary: We propose a novel Transformer-based generation framework to achieve the goal.
Core techniques in our method to enforce faithfulness include a new table-text optimal-transport matching loss.
To evaluate faithfulness, we propose a new automatic metric specialized to the table-to-text generation problem.
- Score: 63.84063384518667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text generation from a knowledge base aims to translate knowledge triples to
natural language descriptions. Most existing methods ignore the faithfulness
between a generated text description and the original table, leading to
generated information that goes beyond the content of the table. In this paper,
for the first time, we propose a novel Transformer-based generation framework
to achieve the goal. The core techniques in our method to enforce faithfulness
include a new table-text optimal-transport matching loss and a table-text
embedding similarity loss based on the Transformer model. Furthermore, to
evaluate faithfulness, we propose a new automatic metric specialized to the
table-to-text generation problem. We also provide detailed analysis on each
component of our model in our experiments. Automatic and human evaluations show
that our framework can significantly outperform state-of-the-art by a large
margin.
Related papers
- Towards Robustness of Text-to-Visualization Translation against Lexical and Phrasal Variability [27.16741353384065]
Text-to-vis models often rely on lexical matching between words in the questions and tokens in data schemas.
In this study, we examine the robustness of current text-to-vis models, an area that has not previously been explored.
We propose a novel framework based on Retrieval-Augmented Generation (RAG) technique, named GRED, specifically designed to address input perturbations in two variants.
arXiv Detail & Related papers (2024-04-10T16:12:50Z) - Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain [53.22419717434372]
We propose a new task, namely stylized data-to-text generation, whose aim is to generate coherent text according to a specific style.
This task is non-trivial, due to three challenges: the logic of the generated text, unstructured style reference, and biased training samples.
We propose a novel stylized data-to-text generation model, named StyleD2T, comprising three components: logic planning-enhanced data embedding, mask-based style embedding, and unbiased stylized text generation.
arXiv Detail & Related papers (2023-05-05T03:02:41Z) - Few-Shot Table-to-Text Generation with Prompt Planning and Knowledge
Memorization [41.20314472839442]
We suggest a new framework: PromptMize, which targets table-to-text generation under few-shot settings.
The design of our framework consists of two aspects: a prompt planner and a knowledge adapter.
Our model achieves remarkable performance in generating quality as judged by human and automatic evaluations.
arXiv Detail & Related papers (2023-02-09T03:04:11Z) - Towards Table-to-Text Generation with Pretrained Language Model: A Table
Structure Understanding and Text Deliberating Approach [60.03002572791552]
We propose a table structure understanding and text deliberating approach, namely TASD.
Specifically, we devise a three-layered multi-head attention network to realize the table-structure-aware text generation model.
Our approach can generate faithful and fluent descriptive texts for different types of tables.
arXiv Detail & Related papers (2023-01-05T14:03:26Z) - Attend, Memorize and Generate: Towards Faithful Table-to-Text Generation
in Few Shots [58.404516361586325]
Few-shot table-to-text generation is a task of composing fluent and faithful sentences to convey table content using limited data.
This paper proposes a novel approach, Memorize and Generate (called AMG), inspired by the text generation process of humans.
arXiv Detail & Related papers (2022-03-01T20:37:20Z) - Transformer Models for Text Coherence Assessment [14.132559978971377]
Coherence is an important aspect of text quality and is crucial for ensuring its readability.
Previous work has leveraged entity-based methods, syntactic patterns, discourse relations, and more recently traditional deep learning architectures for text coherence assessment.
We propose four different Transformer-based architectures for the task: vanilla Transformer, hierarchical Transformer, multi-task learning-based model, and a model with fact-based input representation.
arXiv Detail & Related papers (2021-09-05T22:27:17Z) - Sketch and Refine: Towards Faithful and Informative Table-to-Text
Generation [58.320248632121476]
We propose a novel two-stage method that combines both Autoregressive and Non-Autoregressive generations (SANA)
Our approach includes: (1) skeleton generation with an autoregressive pointer network to select key tokens from the source table; (2) edit-based non-autoregressive generation model to produce texts via iterative insertion and deletion operations.
By integrating hard constraints from the skeleton, the non-autoregressive model improves the generation's coverage over the source table and thus enhances its faithfulness.
arXiv Detail & Related papers (2021-05-31T08:18:13Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.