Multi-Center Federated Learning
- URL: http://arxiv.org/abs/2005.01026v2
- Date: Sat, 21 Aug 2021 05:50:20 GMT
- Title: Multi-Center Federated Learning
- Authors: Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, Jing
Jiang, Chengqi Zhang
- Abstract summary: This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
- Score: 62.57229809407692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning has received great attention for its capability to train a
large-scale model in a decentralized manner without needing to access user data
directly. It helps protect the users' private data from centralized collecting.
Unlike distributed machine learning, federated learning aims to tackle non-IID
data from heterogeneous sources in various real-world applications, such as
those on smartphones. Existing federated learning approaches usually adopt a
single global model to capture the shared knowledge of all users by aggregating
their gradients, regardless of the discrepancy between their data
distributions. However, due to the diverse nature of user behaviors, assigning
users' gradients to different global models (i.e., centers) can better capture
the heterogeneity of data distributions across users. Our paper proposes a
novel multi-center aggregation mechanism for federated learning, which learns
multiple global models from the non-IID user data and simultaneously derives
the optimal matching between users and centers. We formulate the problem as a
joint optimization that can be efficiently solved by a stochastic expectation
maximization (EM) algorithm. Our experimental results on benchmark datasets
show that our method outperforms several popular federated learning methods.
Related papers
- Multi-Center Federated Learning [62.32725938999433]
Federated learning (FL) can protect data privacy in distributed learning.
It merely collects local gradients from users without access to their data.
We propose a novel multi-center aggregation mechanism.
arXiv Detail & Related papers (2021-08-19T12:20:31Z) - Decentralized federated learning of deep neural networks on non-iid data [0.6335848702857039]
We tackle the non-problem of learning a personalized deep learning model in a decentralized setting.
We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data detect each other and cooperate.
PENS is able to achieve higher accuracies as compared to strong baselines.
arXiv Detail & Related papers (2021-07-18T19:05:44Z) - Federated Mixture of Experts [94.25278695272874]
FedMix is a framework that allows us to train an ensemble of specialized models.
We show that users with similar data characteristics select the same members and therefore share statistical strength.
arXiv Detail & Related papers (2021-07-14T14:15:24Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Analysis and Optimal Edge Assignment For Hierarchical Federated Learning
on Non-IID Data [43.32085029569374]
Federated learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena.
In the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model.
We propose a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer.
arXiv Detail & Related papers (2020-12-10T12:18:13Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - Personalized Federated Learning: A Meta-Learning Approach [28.281166755509886]
In Federated Learning, we aim to train models across multiple computing units (users)
In this paper, we study a personalized variant of the federated learning in which our goal is to find an initial shared model that current or new users can easily adapt to their local dataset by performing one or a few steps of gradient descent with respect to their own data.
arXiv Detail & Related papers (2020-02-19T01:08:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.