Decentralized federated learning of deep neural networks on non-iid data
- URL: http://arxiv.org/abs/2107.08517v2
- Date: Tue, 20 Jul 2021 13:53:58 GMT
- Title: Decentralized federated learning of deep neural networks on non-iid data
- Authors: Noa Onoszko, Gustav Karlsson, Olof Mogren, Edvin Listo Zec
- Abstract summary: We tackle the non-problem of learning a personalized deep learning model in a decentralized setting.
We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data detect each other and cooperate.
PENS is able to achieve higher accuracies as compared to strong baselines.
- Score: 0.6335848702857039
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We tackle the non-convex problem of learning a personalized deep learning
model in a decentralized setting. More specifically, we study decentralized
federated learning, a peer-to-peer setting where data is distributed among many
clients and where there is no central server to orchestrate the training. In
real world scenarios, the data distributions are often heterogeneous between
clients. Therefore, in this work we study the problem of how to efficiently
learn a model in a peer-to-peer system with non-iid client data. We propose a
method named Performance-Based Neighbor Selection (PENS) where clients with
similar data distributions detect each other and cooperate by evaluating their
training losses on each other's data to learn a model suitable for the local
data distribution. Our experiments on benchmark datasets show that our proposed
method is able to achieve higher accuracies as compared to strong baselines.
Related papers
- Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions [1.6385815610837167]
Federated Cluster-Wise Refinement (FedCRef) involves clients that collaboratively train models on clusters with similar data distributions.
In these groups, clients collaboratively train a shared model representing each data distribution, while continuously refining their local clusters to enhance data association accuracy.
This iterative process allows our system to identify all potential data distributions across the network and develop robust representation models for each.
arXiv Detail & Related papers (2024-08-20T09:05:44Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalized Decentralized Federated Learning with Knowledge
Distillation [5.469841541565307]
Personalization in federated learning functions as a coordinator for clients with high variance in data or behavior.
It is generally challenging to quantify similarity under limited knowledge about other users' models given to users in a decentralized network.
We propose a personalized and fully decentralized FL algorithm, leveraging knowledge distillation techniques to empower each device so as to discern statistical distances between local models.
arXiv Detail & Related papers (2023-02-23T16:41:07Z) - Data Selection for Efficient Model Update in Federated Learning [0.07614628596146598]
We propose to reduce the amount of local data that is needed to train a global model.
We do this by splitting the model into a lower part for generic feature extraction and an upper part that is more sensitive to the characteristics of the local data.
Our experiments show that less than 1% of the local data can transfer the characteristics of the client data to the global model.
arXiv Detail & Related papers (2021-11-05T14:07:06Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.