One-Shot Image Classification by Learning to Restore Prototypes
- URL: http://arxiv.org/abs/2005.01234v1
- Date: Mon, 4 May 2020 02:11:30 GMT
- Title: One-Shot Image Classification by Learning to Restore Prototypes
- Authors: Wanqi Xue, Wei Wang
- Abstract summary: One-shot image classification aims to train image classifiers over the dataset with only one image per category.
For one-shot learning, the existing metric learning approaches would suffer poor performance because the single training image may not be representative of the class.
We propose a simple yet effective regression model, denoted by RestoreNet, which learns a class transformation on the image feature to move the image closer to the class center in the feature space.
- Score: 11.448423413463916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-shot image classification aims to train image classifiers over the
dataset with only one image per category. It is challenging for modern deep
neural networks that typically require hundreds or thousands of images per
class. In this paper, we adopt metric learning for this problem, which has been
applied for few- and many-shot image classification by comparing the distance
between the test image and the center of each class in the feature space.
However, for one-shot learning, the existing metric learning approaches would
suffer poor performance because the single training image may not be
representative of the class. For example, if the image is far away from the
class center in the feature space, the metric-learning based algorithms are
unlikely to make correct predictions for the test images because the decision
boundary is shifted by this noisy image. To address this issue, we propose a
simple yet effective regression model, denoted by RestoreNet, which learns a
class agnostic transformation on the image feature to move the image closer to
the class center in the feature space. Experiments demonstrate that RestoreNet
obtains superior performance over the state-of-the-art methods on a broad range
of datasets. Moreover, RestoreNet can be easily combined with other methods to
achieve further improvement.
Related papers
- Unicom: Universal and Compact Representation Learning for Image
Retrieval [65.96296089560421]
We cluster the large-scale LAION400M into one million pseudo classes based on the joint textual and visual features extracted by the CLIP model.
To alleviate such conflict, we randomly select partial inter-class prototypes to construct the margin-based softmax loss.
Our method significantly outperforms state-of-the-art unsupervised and supervised image retrieval approaches on multiple benchmarks.
arXiv Detail & Related papers (2023-04-12T14:25:52Z) - Matching Feature Sets for Few-Shot Image Classification [22.84472344406448]
We argue that a set-based representation intrinsically builds a richer representation of images from the base classes.
Our approach, dubbed SetFeat, embeds shallow self-attention mechanisms inside existing encoder architectures.
arXiv Detail & Related papers (2022-04-02T22:42:54Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - Improving Few-shot Learning with Weakly-supervised Object Localization [24.3569501375842]
We propose a novel framework that generates class representations by extracting features from class-relevant regions of the images.
Our method outperforms the baseline few-shot model in miniImageNet and tieredImageNet benchmarks.
arXiv Detail & Related papers (2021-05-25T07:39:32Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
This paper tackles the problem of learning a finer representation than the one provided by training labels.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods.
arXiv Detail & Related papers (2020-11-25T19:06:26Z) - Background Splitting: Finding Rare Classes in a Sea of Background [55.03789745276442]
We focus on the real-world problem of training accurate deep models for image classification of a small number of rare categories.
In these scenarios, almost all images belong to the background category in the dataset (>95% of the dataset is background)
We demonstrate that both standard fine-tuning approaches and state-of-the-art approaches for training on imbalanced datasets do not produce accurate deep models in the presence of this extreme imbalance.
arXiv Detail & Related papers (2020-08-28T23:05:15Z) - SCAN: Learning to Classify Images without Labels [73.69513783788622]
We advocate a two-step approach where feature learning and clustering are decoupled.
A self-supervised task from representation learning is employed to obtain semantically meaningful features.
We obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime.
arXiv Detail & Related papers (2020-05-25T18:12:33Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.