Demystifying a Dark Art: Understanding Real-World Machine Learning Model
Development
- URL: http://arxiv.org/abs/2005.01520v1
- Date: Mon, 4 May 2020 14:33:39 GMT
- Title: Demystifying a Dark Art: Understanding Real-World Machine Learning Model
Development
- Authors: Angela Lee, Doris Xin, Doris Lee, Aditya Parameswaran
- Abstract summary: We analyze over 475k user-generated on OpenML, an open-source platform for tracking and sharing machine learning.
We find that users often adopt a manual, automated, or mixed approach when iterating on their iterations.
- Score: 2.422369741135428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is well-known that the process of developing machine learning (ML)
workflows is a dark-art; even experts struggle to find an optimal workflow
leading to a high accuracy model. Users currently rely on empirical
trial-and-error to obtain their own set of battle-tested guidelines to inform
their modeling decisions. In this study, we aim to demystify this dark art by
understanding how people iterate on ML workflows in practice. We analyze over
475k user-generated workflows on OpenML, an open-source platform for tracking
and sharing ML workflows. We find that users often adopt a manual, automated,
or mixed approach when iterating on their workflows. We observe that manual
approaches result in fewer wasted iterations compared to automated approaches.
Yet, automated approaches often involve more preprocessing and hyperparameter
options explored, resulting in higher performance overall--suggesting potential
benefits for a human-in-the-loop ML system that appropriately recommends a
clever combination of the two strategies.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML)
We argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems.
arXiv Detail & Related papers (2024-06-05T15:05:24Z) - Couler: Unified Machine Learning Workflow Optimization in Cloud [6.769259207650922]
Couler is a system designed for unified ML workflow optimization in the cloud.
We integrate Large Language Models (LLMs) into workflow generation, and provide a unified programming interface for various workflow engines.
Couer has successfully improved the CPU/Memory utilization by more than 15% and the workflow completion rate by around 17%.
arXiv Detail & Related papers (2024-03-12T12:47:32Z) - Power-up! What Can Generative Models Do for Human Computation Workflows? [13.484359389266864]
Investigation into large language models (LLMs) as part of crowdsourcing remains an under-explored space.
From an empirical standpoint, little is currently understood about how LLMs can improve the effectiveness of crowdsourcing.
arXiv Detail & Related papers (2023-07-05T12:35:29Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
We argue that re-purposing existing tools won't solve the current productivity issues.
We introduce Metaflow, an open-source framework for ML projects explicitly designed to boost the productivity of data practitioners.
arXiv Detail & Related papers (2023-03-21T11:28:09Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Scanflow: A multi-graph framework for Machine Learning workflow
management, supervision, and debugging [0.0]
We propose a novel containerized directed graph framework to support end-to-end Machine Learning workflow management.
The framework allows defining and deploying ML in containers, tracking their metadata, checking their behavior in production, and improving the models by using both learned and human-provided knowledge.
arXiv Detail & Related papers (2021-11-04T17:01:12Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions.
Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets.
arXiv Detail & Related papers (2021-09-12T18:34:33Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.