A Dynamical Mean-Field Theory for Learning in Restricted Boltzmann
Machines
- URL: http://arxiv.org/abs/2005.01560v1
- Date: Mon, 4 May 2020 15:19:31 GMT
- Title: A Dynamical Mean-Field Theory for Learning in Restricted Boltzmann
Machines
- Authors: Burak \c{C}akmak and Manfred Opper
- Abstract summary: We define a message-passing algorithm for computing magnetizations in Boltzmann machines.
We prove the global convergence of the algorithm under a stability criterion and compute convergence rates showing excellent agreement with numerical simulations.
- Score: 2.8021833233819486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We define a message-passing algorithm for computing magnetizations in
Restricted Boltzmann machines, which are Ising models on bipartite graphs
introduced as neural network models for probability distributions over spin
configurations. To model nontrivial statistical dependencies between the spins'
couplings, we assume that the rectangular coupling matrix is drawn from an
arbitrary bi-rotation invariant random matrix ensemble. Using the dynamical
functional method of statistical mechanics we exactly analyze the dynamics of
the algorithm in the large system limit. We prove the global convergence of the
algorithm under a stability criterion and compute asymptotic convergence rates
showing excellent agreement with numerical simulations.
Related papers
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Simplex Random Features [53.97976744884616]
We present Simplex Random Features (SimRFs), a new random feature (RF) mechanism for unbiased approximation of the softmax and Gaussian kernels.
We prove that SimRFs provide the smallest possible mean square error (MSE) on unbiased estimates of these kernels.
We show consistent gains provided by SimRFs in settings including pointwise kernel estimation, nonparametric classification and scalable Transformers.
arXiv Detail & Related papers (2023-01-31T18:53:39Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
We provide conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the logistical optima.
In particular, we establish local variation of the algorithm without any assumptions on the data-generating process.
We explore a special case involving a semi-orthogonal design under which a global convergence is obtained.
arXiv Detail & Related papers (2020-10-25T05:15:13Z) - A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions [17.14287157979558]
We propose an adaptively weighted gradient Langevin dynamics (SGLD) for learning in big data statistics.
The proposed algorithm is tested on benchmark datasets including CIFAR100.
arXiv Detail & Related papers (2020-10-19T19:20:47Z) - Estimation of sparse Gaussian graphical models with hidden clustering
structure [8.258451067861932]
We propose a model to estimate the sparse Gaussian graphical models with hidden clustering structure.
We develop a symmetric Gauss-Seidel based alternating direction method of the multipliers.
Numerical experiments on both synthetic data and real data demonstrate the good performance of our model.
arXiv Detail & Related papers (2020-04-17T08:43:31Z) - Analysis of Bayesian Inference Algorithms by the Dynamical Functional
Approach [2.8021833233819486]
We analyze an algorithm for approximate inference with large Gaussian latent variable models in a student-trivial scenario.
For the case of perfect data-model matching, the knowledge of static order parameters derived from the replica method allows us to obtain efficient algorithmic updates.
arXiv Detail & Related papers (2020-01-14T17:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.