論文の概要: Discrete Optimization for Unsupervised Sentence Summarization with
Word-Level Extraction
- arxiv url: http://arxiv.org/abs/2005.01791v1
- Date: Mon, 4 May 2020 19:01:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 00:55:14.914055
- Title: Discrete Optimization for Unsupervised Sentence Summarization with
Word-Level Extraction
- Title(参考訳): 単語レベル抽出による教師なし文要約の離散最適化
- Authors: Raphael Schumann, Lili Mou, Yao Lu, Olga Vechtomova, Katja Markert
- Abstract要約: 自動要約は、その最も重要な情報を保存しながら、文章の短いバージョンを生成する。
我々はこれら2つの側面を言語モデリングと意味的類似度メトリクスからなる教師なし目的関数でモデル化する。
提案手法は,ROUGEスコアによる教師なし文要約のための新しい最先端技術を実現する。
- 参考スコア(独自算出の注目度): 31.648764677078837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic sentence summarization produces a shorter version of a sentence,
while preserving its most important information. A good summary is
characterized by language fluency and high information overlap with the source
sentence. We model these two aspects in an unsupervised objective function,
consisting of language modeling and semantic similarity metrics. We search for
a high-scoring summary by discrete optimization. Our proposed method achieves a
new state-of-the art for unsupervised sentence summarization according to ROUGE
scores. Additionally, we demonstrate that the commonly reported ROUGE F1 metric
is sensitive to summary length. Since this is unwillingly exploited in recent
work, we emphasize that future evaluation should explicitly group summarization
systems by output length brackets.
- Abstract(参考訳): 自動要約は、その最も重要な情報を保存しながら、文章の短いバージョンを生成する。
優れた要約は、言語流布と、ソース文と重なる高い情報によって特徴づけられる。
我々はこれら2つの側面を言語モデリングと意味的類似度メトリクスからなる教師なし目的関数でモデル化する。
離散最適化により高速な要約を探索する。
提案手法は,ROUGEスコアによる教師なし文要約のための新しい手法を実現する。
さらに,一般に報告されているROUGE F1測定値が要約長に敏感であることを示す。
これは最近の研究で好ましくない利用であるので、将来の評価は、出力長さブラケットによるグループ要約システムを明示的に行うべきであることを強調する。
関連論文リスト
- Hierarchical Indexing for Retrieval-Augmented Opinion Summarization [60.5923941324953]
本稿では,抽出アプローチの帰属性と拡張性と,大規模言語モデル(LLM)の一貫性と拡散性を組み合わせた,教師なし抽象的意見要約手法を提案する。
我々の方法であるHIROは、意味的に整理された離散的な階層を通して文を経路にマッピングするインデックス構造を学習する。
推測時にインデックスを投入し、入力レビューから人気意見を含む文群を識別し、検索する。
論文 参考訳(メタデータ) (2024-03-01T10:38:07Z) - Bipartite Graph Pre-training for Unsupervised Extractive Summarization
with Graph Convolutional Auto-Encoders [24.13261636386226]
本研究は, 文章表現の正当性や特徴を最適化するプロセスから, 事前学習した埋め込みを活用することで, 重要な文のランク付けに役立てるものであることを論じる。
そこで本研究では,文埋め込みのためのグラフ事前学習オートエンコーダを提案する。
論文 参考訳(メタデータ) (2023-10-29T12:27:18Z) - On Context Utilization in Summarization with Large Language Models [83.84459732796302]
大きな言語モデル(LLM)は抽象的な要約タスクに優れ、流動的で関連する要約を提供する。
最近の進歩は、100kトークンを超える長期入力コンテキストを扱う能力を拡張している。
要約における文脈利用と位置バイアスに関する最初の総合的研究を行う。
論文 参考訳(メタデータ) (2023-10-16T16:45:12Z) - DiffuSum: Generation Enhanced Extractive Summarization with Diffusion [14.930704950433324]
抽出要約は、ソース文書から直接文章を抽出することで要約を形成することを目的としている。
本稿では,抽出要約のための新しいパラダイムであるDiffuSumを提案する。
実験結果から, ROUGEスコアが44.83/22.56/40.56$のCNN/DailyMailにおけるDiffuSumの抽出結果が得られた。
論文 参考訳(メタデータ) (2023-05-02T19:09:16Z) - Text Summarization with Oracle Expectation [88.39032981994535]
抽出要約は、文書の中で最も重要な文を識別し、連結することによって要約を生成する。
ほとんどの要約データセットは、文書文が要約に値するかどうかを示す金のラベルを持っていない。
本稿では,ソフトな予測に基づく文ラベルを生成する,シンプルで効果的なラベル付けアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:10:08Z) - Summarization Programs: Interpretable Abstractive Summarization with
Neural Modular Trees [89.60269205320431]
現在の抽象的要約モデルは明確な解釈可能性の欠如に悩まされるか、あるいは不完全理性を与える。
本稿では,バイナリツリーの(順序付き)リストからなる解釈可能なモジュラーフレームワークであるSummarization Program (SP)を提案する。
要約プログラムは、要約文毎に1つのルートノードを含み、各要約文と文書文を個別のツリーで接続する。
論文 参考訳(メタデータ) (2022-09-21T16:50:22Z) - A Character-Level Length-Control Algorithm for Non-Autoregressive
Sentence Summarization [23.495225374478295]
文要約は、長い文を主幹を保ちながら短い文に圧縮することを目的としており、見出し生成のような広範囲の現実世界の応用がある。
本研究では,要約のための文字レベル長制御の新しい問題に対処し,コネクショニスト時間分類(CTC)モデルに基づく動的プログラミングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-28T21:09:53Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
SNaCは長文の微粒化アノテーションに根ざした物語コヒーレンス評価フレームワークである。
本稿では,生成した物語要約におけるコヒーレンスエラーの分類法を開発し,150冊の本や映画の脚本要約にまたがる6.6k文のスパンレベルアノテーションを収集する。
我々の研究は、最先端の要約モデルによって生成されるコヒーレンスエラーの最初の特徴と、群衆アノテータからコヒーレンス判断を引き出すためのプロトコルを提供する。
論文 参考訳(メタデータ) (2022-05-19T16:01:47Z) - Reinforcing Semantic-Symmetry for Document Summarization [15.113768658584979]
文書要約は、長い文書を詳細な情報と正確な意味記述を備えた短いバージョンに凝縮する。
本稿では,文書要約のための新しいtextbfreinforcing stextbfemantic-textbfsymmetric Learning textbfmodelを提案する。
CNN/Daily MailとBigPatentの2つの大胆なベンチマークデータセットに対して、一連の実験が行われた。
論文 参考訳(メタデータ) (2021-12-14T17:41:37Z) - Unsupervised Extractive Summarization using Pointwise Mutual Information [5.544401446569243]
文間のポイントワイズ相互情報 (PMI) を用いて, 関連性および冗長性の新たな指標を提案する。
本手法は, ニュース, 医療雑誌記事, 個人逸話など, さまざまな領域のデータセットにおける類似性に基づく手法を上回っていることを示した。
論文 参考訳(メタデータ) (2021-02-11T21:05:50Z) - Unsupervised Extractive Summarization by Pre-training Hierarchical
Transformers [107.12125265675483]
教師なし抽出文書要約は、訓練中にラベル付き要約を用いることなく、文書から重要な文章を選択することを目的としている。
既存の手法は主にグラフベースで、文をノードとして、エッジの重みは文の類似性によって測定される。
教師なし抽出要約のための文のランク付けにはトランスフォーマーの注意が利用できることがわかった。
論文 参考訳(メタデータ) (2020-10-16T08:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。