Learning-based Tracking of Fast Moving Objects
- URL: http://arxiv.org/abs/2005.01802v1
- Date: Mon, 4 May 2020 19:20:09 GMT
- Title: Learning-based Tracking of Fast Moving Objects
- Authors: Ales Zita, Filip Sroubek
- Abstract summary: Tracking fast moving objects, which appear as blurred streaks in video sequences, is a difficult task for standard trackers.
We present a tracking-by-segmentation approach implemented using state-of-the-art deep learning methods that performs near-realtime tracking on real-world video sequences.
- Score: 8.8456602191903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tracking fast moving objects, which appear as blurred streaks in video
sequences, is a difficult task for standard trackers as the object position
does not overlap in consecutive video frames and texture information of the
objects is blurred. Up-to-date approaches tuned for this task are based on
background subtraction with static background and slow deblurring algorithms.
In this paper, we present a tracking-by-segmentation approach implemented using
state-of-the-art deep learning methods that performs near-realtime tracking on
real-world video sequences. We implemented a physically plausible FMO sequence
generator to be a robust foundation for our training pipeline and demonstrate
the ease of fast generator and network adaptation for different FMO scenarios
in terms of foreground variations.
Related papers
- DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild.
We show that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
arXiv Detail & Related papers (2024-11-20T13:01:16Z) - DINTR: Tracking via Diffusion-based Interpolation [12.130669304428565]
This work proposes a novel diffusion-based methodology to formulate the tracking task.
Our INterpolation TrackeR (DINTR) presents a promising new paradigm and achieves a superior multiplicity on seven benchmarks across five indicator representations.
arXiv Detail & Related papers (2024-10-14T00:41:58Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [88.33470650615162]
Moving object segmentation (MOS) in dynamic scenes is an important, challenging, but under-explored research topic for autonomous driving.
Most segmentation methods leverage motion cues obtained from optical flow maps.
We propose to exploit event cameras for better video understanding, which provide rich motion cues without relying on optical flow.
arXiv Detail & Related papers (2023-04-28T23:43:10Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Fast Video Object Segmentation With Temporal Aggregation Network and
Dynamic Template Matching [67.02962970820505]
We introduce "tracking-by-detection" into Video Object (VOS)
We propose a new temporal aggregation network and a novel dynamic time-evolving template matching mechanism to achieve significantly improved performance.
We achieve new state-of-the-art performance on the DAVIS benchmark without complicated bells and whistles in both speed and accuracy, with a speed of 0.14 second per frame and J&F measure of 75.9% respectively.
arXiv Detail & Related papers (2020-07-11T05:44:16Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
We propose a novel deep neural network to learn and regress a parametric object-level motion/transform model for event-based object tracking.
To achieve this goal, we propose a synchronous Time-Surface with Linear Time Decay representation.
We feed the sequence of TSLTD frames to a novel Retinal Motion Regression Network (RMRNet) perform to an end-to-end 5-DoF object motion regression.
arXiv Detail & Related papers (2020-02-14T08:19:50Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.