Expanding Sparse Guidance for Stereo Matching
- URL: http://arxiv.org/abs/2005.02123v1
- Date: Fri, 24 Apr 2020 06:41:11 GMT
- Title: Expanding Sparse Guidance for Stereo Matching
- Authors: Yu-Kai Huang, Yueh-Cheng Liu, Tsung-Han Wu, Hung-Ting Su and Winston
H. Hsu
- Abstract summary: We propose a novel sparsity expansion technique to expand the sparse cues concerning RGB images for local feature enhancement.
Our approach significantly boosts the existing state-of-the-art stereo algorithms with extremely sparse cues.
- Score: 24.74333370941674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of image based stereo estimation suffers from lighting
variations, repetitive patterns and homogeneous appearance. Moreover, to
achieve good performance, stereo supervision requires sufficient
densely-labeled data, which are hard to obtain. In this work, we leverage small
amount of data with very sparse but accurate disparity cues from LiDAR to
bridge the gap. We propose a novel sparsity expansion technique to expand the
sparse cues concerning RGB images for local feature enhancement. The feature
enhancement method can be easily applied to any stereo estimation algorithms
with cost volume at the test stage. Extensive experiments on stereo datasets
demonstrate the effectiveness and robustness across different backbones on
domain adaption and self-supervision scenario. Our sparsity expansion method
outperforms previous methods in terms of disparity by more than 2 pixel error
on KITTI Stereo 2012 and 3 pixel error on KITTI Stereo 2015. Our approach
significantly boosts the existing state-of-the-art stereo algorithms with
extremely sparse cues.
Related papers
- Stereo Risk: A Continuous Modeling Approach to Stereo Matching [110.22344879336043]
We introduce Stereo Risk, a new deep-learning approach to solve the classical stereo-matching problem in computer vision.
We demonstrate that Stereo Risk enhances stereo-matching performance for deep networks, particularly for disparities with multi-modal probability distributions.
A comprehensive analysis demonstrates our method's theoretical soundness and superior performance over the state-of-the-art methods across various benchmark datasets.
arXiv Detail & Related papers (2024-07-03T14:30:47Z) - RomniStereo: Recurrent Omnidirectional Stereo Matching [6.153793254880079]
We propose a recurrent omnidirectional stereo matching (RomniStereo) algorithm.
Our best model improves the average MAE metric by 40.7% over the previous SOTA baseline.
When visualizing the results, our models demonstrate clear advantages on both synthetic and realistic examples.
arXiv Detail & Related papers (2024-01-09T04:06:01Z) - Stereo Matching with Cost Volume based Sparse Disparity Propagation [27.74131924190943]
We propose a simple yet novel scheme to improve general stereo matching based on matching cost volume and sparse matching feature points.
Our scheme achieves promising performance comparable to state-of-the-art methods.
arXiv Detail & Related papers (2022-01-28T05:20:41Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
We present a novel domain-adaptive approach called AdaStereo to align multi-level representations for deep stereo matching networks.
Our models achieve state-of-the-art cross-domain performance on multiple benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo.
Our method is robust to various domain adaptation settings, and can be easily integrated into quick adaptation application scenarios and real-world deployments.
arXiv Detail & Related papers (2021-12-09T15:10:47Z) - Neural Disparity Refinement for Arbitrary Resolution Stereo [67.55946402652778]
We introduce a novel architecture for neural disparity refinement aimed at facilitating deployment of 3D computer vision on cheap and widespread consumer devices.
Our approach relies on a continuous formulation that enables to estimate a refined disparity map at any arbitrary output resolution.
arXiv Detail & Related papers (2021-10-28T18:00:00Z) - SMD-Nets: Stereo Mixture Density Networks [68.56947049719936]
We propose Stereo Mixture Density Networks (SMD-Nets), a simple yet effective learning framework compatible with a wide class of 2D and 3D architectures.
Specifically, we exploit bimodal mixture densities as output representation and show that this allows for sharp and precise disparity estimates near discontinuities.
We carry out comprehensive experiments on a new high-resolution and highly realistic synthetic stereo dataset, consisting of stereo pairs at 8Mpx resolution, as well as on real-world stereo datasets.
arXiv Detail & Related papers (2021-04-08T16:15:46Z) - PVStereo: Pyramid Voting Module for End-to-End Self-Supervised Stereo
Matching [14.603116313499648]
We propose a robust and effective self-supervised stereo matching approach, consisting of a pyramid voting module (PVM) and a novel DCNN architecture, referred to as OptStereo.
Specifically, our OptStereo first builds multi-scale cost volumes, and then adopts a recurrent unit to iteratively update disparity estimations at high resolution.
We publish the HKUST-Drive dataset, a large-scale synthetic stereo dataset, collected under different illumination and weather conditions for research purposes.
arXiv Detail & Related papers (2021-03-12T05:27:14Z) - Parallax Attention for Unsupervised Stereo Correspondence Learning [46.035892564279564]
Stereo image pairs encode 3D scene cues into stereo correspondences between the left and right images.
Recent CNN based methods commonly use cost volume techniques to capture stereo correspondence over large disparities.
We propose a generic parallax-attention mechanism (PAM) to capture stereo correspondence regardless of disparity variations.
arXiv Detail & Related papers (2020-09-16T01:30:13Z) - AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching [50.06646151004375]
A novel domain-adaptive pipeline called AdaStereo aims to align multi-level representations for deep stereo matching networks.
Our AdaStereo models achieve state-of-the-art cross-domain performance on multiple stereo benchmarks, including KITTI, Middlebury, ETH3D, and DrivingStereo.
arXiv Detail & Related papers (2020-04-09T16:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.