Mono2Stereo: A Benchmark and Empirical Study for Stereo Conversion
- URL: http://arxiv.org/abs/2503.22262v1
- Date: Fri, 28 Mar 2025 09:25:58 GMT
- Title: Mono2Stereo: A Benchmark and Empirical Study for Stereo Conversion
- Authors: Songsong Yu, Yuxin Chen, Zhongang Qi, Zeke Xie, Yifan Wang, Lijun Wang, Ying Shan, Huchuan Lu,
- Abstract summary: We introduce the Mono2Stereo dataset, providing high-quality training data and benchmark to support in-depth exploration of stereo conversion.<n>We conduct an empirical study that yields two primary findings. 1) The differences between the left and right views are subtle, yet existing metrics consider overall pixels, failing to concentrate on regions critical to stereo effects.<n>We introduce a new evaluation metric, Stereo Intersection-over-Union, which harmonizes disparity and achieves a high correlation with human judgments on stereo effect.
- Score: 88.67015254278859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid proliferation of 3D devices and the shortage of 3D content, stereo conversion is attracting increasing attention. Recent works introduce pretrained Diffusion Models (DMs) into this task. However, due to the scarcity of large-scale training data and comprehensive benchmarks, the optimal methodologies for employing DMs in stereo conversion and the accurate evaluation of stereo effects remain largely unexplored. In this work, we introduce the Mono2Stereo dataset, providing high-quality training data and benchmark to support in-depth exploration of stereo conversion. With this dataset, we conduct an empirical study that yields two primary findings. 1) The differences between the left and right views are subtle, yet existing metrics consider overall pixels, failing to concentrate on regions critical to stereo effects. 2) Mainstream methods adopt either one-stage left-to-right generation or warp-and-inpaint pipeline, facing challenges of degraded stereo effect and image distortion respectively. Based on these findings, we introduce a new evaluation metric, Stereo Intersection-over-Union, which prioritizes disparity and achieves a high correlation with human judgments on stereo effect. Moreover, we propose a strong baseline model, harmonizing the stereo effect and image quality simultaneously, and notably surpassing current mainstream methods. Our code and data will be open-sourced to promote further research in stereo conversion. Our models are available at mono2stereo-bench.github.io.
Related papers
- Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model [62.37493746544967]
Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps.
Existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments.
We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation.
arXiv Detail & Related papers (2025-03-30T16:24:22Z) - GenStereo: Towards Open-World Generation of Stereo Images and Unsupervised Matching [9.322869042942504]
GenStereo is a diffusion-based approach to stereo image generation.<n>It achieves both visual quality for viewing and geometric accuracy for matching.<n>Our framework eliminates the need for complex hardware setups while enabling high-quality stereo image generation.
arXiv Detail & Related papers (2025-03-17T01:19:28Z) - MaDis-Stereo: Enhanced Stereo Matching via Distilled Masked Image Modeling [18.02254687807291]
Transformer-based stereo models have been studied recently, their performance still lags behind CNN-based stereo models due to the inherent data scarcity issue in the stereo matching task.
We propose Masked Image Modeling Distilled Stereo matching model, termed MaDis-Stereo, that enhances locality inductive bias by leveraging Masked Image Modeling (MIM) in training Transformer-based stereo model.
arXiv Detail & Related papers (2024-09-04T16:17:45Z) - RomniStereo: Recurrent Omnidirectional Stereo Matching [6.153793254880079]
We propose a recurrent omnidirectional stereo matching (RomniStereo) algorithm.
Our best model improves the average MAE metric by 40.7% over the previous SOTA baseline.
When visualizing the results, our models demonstrate clear advantages on both synthetic and realistic examples.
arXiv Detail & Related papers (2024-01-09T04:06:01Z) - Betray Oneself: A Novel Audio DeepFake Detection Model via
Mono-to-Stereo Conversion [70.99781219121803]
Audio Deepfake Detection (ADD) aims to detect the fake audio generated by text-to-speech (TTS), voice conversion (VC) and replay, etc.
We propose a novel ADD model, termed as M2S-ADD, that attempts to discover audio authenticity cues during the mono-to-stereo conversion process.
arXiv Detail & Related papers (2023-05-25T02:54:29Z) - DynamicStereo: Consistent Dynamic Depth from Stereo Videos [91.1804971397608]
We propose DynamicStereo to estimate disparity for stereo videos.
The network learns to pool information from neighboring frames to improve the temporal consistency of its predictions.
We also introduce Dynamic Replica, a new benchmark dataset containing synthetic videos of people and animals in scanned environments.
arXiv Detail & Related papers (2023-05-03T17:40:49Z) - SMD-Nets: Stereo Mixture Density Networks [68.56947049719936]
We propose Stereo Mixture Density Networks (SMD-Nets), a simple yet effective learning framework compatible with a wide class of 2D and 3D architectures.
Specifically, we exploit bimodal mixture densities as output representation and show that this allows for sharp and precise disparity estimates near discontinuities.
We carry out comprehensive experiments on a new high-resolution and highly realistic synthetic stereo dataset, consisting of stereo pairs at 8Mpx resolution, as well as on real-world stereo datasets.
arXiv Detail & Related papers (2021-04-08T16:15:46Z) - Reversing the cycle: self-supervised deep stereo through enhanced
monocular distillation [51.714092199995044]
In many fields, self-supervised learning solutions are rapidly evolving and filling the gap with supervised approaches.
We propose a novel self-supervised paradigm reversing the link between the two.
In order to train deep stereo networks, we distill knowledge through a monocular completion network.
arXiv Detail & Related papers (2020-08-17T07:40:22Z) - Expanding Sparse Guidance for Stereo Matching [24.74333370941674]
We propose a novel sparsity expansion technique to expand the sparse cues concerning RGB images for local feature enhancement.
Our approach significantly boosts the existing state-of-the-art stereo algorithms with extremely sparse cues.
arXiv Detail & Related papers (2020-04-24T06:41:11Z) - AdaStereo: A Simple and Efficient Approach for Adaptive Stereo Matching [50.06646151004375]
A novel domain-adaptive pipeline called AdaStereo aims to align multi-level representations for deep stereo matching networks.
Our AdaStereo models achieve state-of-the-art cross-domain performance on multiple stereo benchmarks, including KITTI, Middlebury, ETH3D, and DrivingStereo.
arXiv Detail & Related papers (2020-04-09T16:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.