PointTriNet: Learned Triangulation of 3D Point Sets
- URL: http://arxiv.org/abs/2005.02138v2
- Date: Thu, 23 Jul 2020 12:37:01 GMT
- Title: PointTriNet: Learned Triangulation of 3D Point Sets
- Authors: Nicholas Sharp, Maks Ovsjanikov
- Abstract summary: This work considers a new task in geometric deep learning: generating a triangulation among a set of points in 3D space.
We present PointTriNet, a differentiable and scalable approach enabling point set triangulation as a layer in 3D learning pipelines.
- Score: 40.75010796720054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work considers a new task in geometric deep learning: generating a
triangulation among a set of points in 3D space. We present PointTriNet, a
differentiable and scalable approach enabling point set triangulation as a
layer in 3D learning pipelines. The method iteratively applies two neural
networks: a classification network predicts whether a candidate triangle should
appear in the triangulation, while a proposal network suggests additional
candidates. Both networks are structured as PointNets over nearby points and
triangles, using a novel triangle-relative input encoding. Since these learning
problems operate on local geometric data, our method is efficient and scalable,
and generalizes to unseen shape categories. Our networks are trained in an
unsupervised manner from a collection of shapes represented as point clouds. We
demonstrate the effectiveness of this approach for classical meshing tasks,
robustness to outliers, and as a component in end-to-end learning systems.
Related papers
- Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - CircNet: Meshing 3D Point Clouds with Circumcenter Detection [67.23307214942696]
Reconstructing 3D point clouds into triangle meshes is a key problem in computational geometry and surface reconstruction.
We introduce a deep neural network that detects the circumcenters to achieve point cloud triangulation.
We validate our method on prominent datasets of both watertight and open surfaces.
arXiv Detail & Related papers (2023-01-23T03:32:57Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - PointResNet: Residual Network for 3D Point Cloud Segmentation and
Classification [18.466814193413487]
Point cloud segmentation and classification are some of the primary tasks in 3D computer vision.
In this paper, we propose PointResNet, a residual block-based approach.
Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks.
arXiv Detail & Related papers (2022-11-20T17:39:48Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
Deep convolutional neural networks (CNNs) have shown outstanding performance in the task of semantically segmenting images.
Here, we propose LatticeNet, a novel approach for 3D semantic segmentation, which takes raw point clouds as input.
We present results of 3D segmentation on multiple datasets where our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-08-09T10:17:27Z) - Learning point embedding for 3D data processing [2.12121796606941]
Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
arXiv Detail & Related papers (2021-07-19T00:25:28Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.