Learning point embedding for 3D data processing
- URL: http://arxiv.org/abs/2107.08565v1
- Date: Mon, 19 Jul 2021 00:25:28 GMT
- Title: Learning point embedding for 3D data processing
- Authors: Zhenpeng Chen
- Abstract summary: Current point-based methods are essentially spatial relationship processing networks.
Our architecture, PE-Net, learns the representation of point clouds in high-dimensional space.
Experiments show that PE-Net achieves the state-of-the-art performance in multiple challenging datasets.
- Score: 2.12121796606941
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Among 2D convolutional networks on point clouds, point-based approaches
consume point clouds of fixed size directly. By analysis of PointNet, a pioneer
in introducing deep learning into point sets, we reveal that current
point-based methods are essentially spatial relationship processing networks.
In this paper, we take a different approach. Our architecture, named PE-Net,
learns the representation of point clouds in high-dimensional space, and
encodes the unordered input points to feature vectors, which standard 2D CNNs
can be applied to. The recommended network can adapt to changes in the number
of input points which is the limit of current methods. Experiments show that in
the tasks of classification and part segmentation, PE-Net achieves the
state-of-the-art performance in multiple challenging datasets, such as ModelNet
and ShapeNetPart.
Related papers
- PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNet is a network designed specifically for point cloud analysis.
Our method demonstrates flexibility by seamlessly integrating with a classification/segmentation head or embedding into off-the-shelf 3D object detection networks.
Experiments on object-level datasets, including ModelNet40, ScanObjectNN, ShapeNet KITTI, and the scene-level dataset KITTI, demonstrate the superior performance of PointeNet over state-of-the-art methods in point cloud analysis.
arXiv Detail & Related papers (2023-12-20T03:34:48Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - Collect-and-Distribute Transformer for 3D Point Cloud Analysis [82.03517861433849]
We propose a new transformer network equipped with a collect-and-distribute mechanism to communicate short- and long-range contexts of point clouds.
Results show the effectiveness of the proposed CDFormer, delivering several new state-of-the-art performances on point cloud classification and segmentation tasks.
arXiv Detail & Related papers (2023-06-02T03:48:45Z) - Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
We propose a novel 3D point cloud representation network, called Dynamic Clustering Transformer Network (DCTNet)
It has an encoder-decoder architecture, allowing for both local and global feature learning.
Our method was evaluated on an object-based dataset (ShapeNet), an urban navigation dataset (Toronto-3D), and a multispectral LiDAR dataset.
arXiv Detail & Related papers (2023-05-30T01:11:05Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - PointResNet: Residual Network for 3D Point Cloud Segmentation and
Classification [18.466814193413487]
Point cloud segmentation and classification are some of the primary tasks in 3D computer vision.
In this paper, we propose PointResNet, a residual block-based approach.
Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks.
arXiv Detail & Related papers (2022-11-20T17:39:48Z) - FatNet: A Feature-attentive Network for 3D Point Cloud Processing [1.502579291513768]
We introduce a novel feature-attentive neural network layer, a FAT layer, that combines both global point-based features and local edge-based features in order to generate better embeddings.
Our architecture achieves state-of-the-art results on the task of point cloud classification, as demonstrated on the ModelNet40 dataset.
arXiv Detail & Related papers (2021-04-07T23:13:56Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
We propose a inception based deep network architecture called PIG-Net, that effectively characterizes the local and global geometric details of the point clouds.
We perform an exhaustive experimental analysis of the PIG-Net architecture on two state-of-the-art datasets.
arXiv Detail & Related papers (2021-01-28T13:27:55Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNet is a novel end-to-end deep learning framework for representing 3D point clouds.
It converts an irregular 3D point cloud into a regular 2D color image, named point geometry image (PGI)
In contrast to conventional regular representation modalities based on multi-view projection and voxelization, the proposed representation is differentiable and reversible.
arXiv Detail & Related papers (2020-12-05T13:19:55Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.