論文の概要: Towards explainable classifiers using the counterfactual approach --
global explanations for discovering bias in data
- arxiv url: http://arxiv.org/abs/2005.02269v2
- Date: Fri, 23 Oct 2020 11:47:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 13:06:59.433255
- Title: Towards explainable classifiers using the counterfactual approach --
global explanations for discovering bias in data
- Title(参考訳): 反事実的アプローチによる説明可能な分類器に向けて -データバイアス発見のためのグローバル説明-
- Authors: Agnieszka Miko{\l}ajczyk, Micha{\l} Grochowski, Arkadiusz Kwasigroch
- Abstract要約: 本稿では,データ中のバイアスの検出と識別に関する属性に基づく説明を要約する。
グローバルな説明が提案され、バイアスの検出とテスト方法に関するステップバイステップのフレームワークが導入されている。
提案手法を用いて, 皮膚内視鏡画像において, アーティファクトを発生させる可能性のある多くのバイアスを同定し, 確認した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper proposes summarized attribution-based post-hoc explanations for the
detection and identification of bias in data. A global explanation is proposed,
and a step-by-step framework on how to detect and test bias is introduced.
Since removing unwanted bias is often a complicated and tremendous task, it is
automatically inserted, instead. Then, the bias is evaluated with the proposed
counterfactual approach. The obtained results are validated on a sample skin
lesion dataset. Using the proposed method, a number of possible bias causing
artifacts are successfully identified and confirmed in dermoscopy images. In
particular, it is confirmed that black frames have a strong influence on
Convolutional Neural Network's prediction: 22% of them changed the prediction
from benign to malignant.
- Abstract(参考訳): 本稿では,データのバイアスの検出と同定のための属性に基づくポストホックな説明を提案する。
グローバルな説明が提案され、バイアスの検出とテスト方法に関するステップバイステップのフレームワークが導入されている。
不要なバイアスを取り除くことは複雑で大変な作業なので、代わりに自動的に挿入される。
そして,提案手法を用いてバイアス評価を行う。
得られた結果は、サンプル皮膚病変データセット上で検証される。
提案手法を用いて, 皮膚内視鏡画像において, アーティファクトの原因となる多くのバイアスを同定し, 確認した。
特に、黒いフレームが畳み込みニューラルネットワークの予測に強い影響を与えていることが確認され、そのうち22%が良性から悪性へと予測を変更した。
関連論文リスト
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - Looking at Model Debiasing through the Lens of Anomaly Detection [11.113718994341733]
ディープニューラルネットワークはデータのバイアスに敏感である。
本稿では,異常検出に基づく新しいバイアス同定手法を提案する。
合成および実際のベンチマークデータセット上で、最先端のパフォーマンスに到達する。
論文 参考訳(メタデータ) (2024-07-24T17:30:21Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - DiffInject: Revisiting Debias via Synthetic Data Generation using Diffusion-based Style Injection [9.801159950963306]
DiffInject(ディフインジェクション)は,事前学習した拡散モデルを用いて,合成バイアス競合サンプルを増強する強力な手法である。
私たちのフレームワークでは、バイアスタイプやラベル付けに関する明確な知識は必要ありません。
論文 参考訳(メタデータ) (2024-06-10T09:45:38Z) - Medical Image Debiasing by Learning Adaptive Agreement from a Biased
Council [8.530912655468645]
ディープラーニングは、データセットバイアスによって得られたショートカットを学習する傾向があります。
その重要性にもかかわらず、データセットバイアスに対処する医療画像分類領域では、多くの研究が行われている。
本稿では,バイアスラベルに依存しないバイアス緩和フレームワークであるバイアスド・カウンシル(Ada-ABC)からの学習適応合意を提案する。
論文 参考訳(メタデータ) (2024-01-22T06:29:52Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Data augmentation and explainability for bias discovery and mitigation
in deep learning [0.0]
この論文は、ディープニューラルネットワークにおけるバイアスの影響を調査し、モデルパフォーマンスへの影響を減らす方法を提案する。
最初の部分は、データやモデルのバイアスやエラーの潜在的な原因を分類し、記述することから始まり、特に機械学習パイプラインのバイアスに焦点を当てている。
次の章では、予測と制御を正当化し、モデルを改善する手段として、説明可能なAIの分類と方法について概説する。
論文 参考訳(メタデータ) (2023-08-18T11:02:27Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Learning Debiased Representation via Disentangled Feature Augmentation [19.348340314001756]
本稿では, 様々なバイアスを伴うサンプルを用いたトレーニングが, 脱バイアスに不可欠であることを示す実験的検討を行った。
本稿では, 多様なバイアス分散サンプルを合成するために, 特徴レベルのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-07-03T08:03:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。