Classification-Based Anomaly Detection for General Data
- URL: http://arxiv.org/abs/2005.02359v1
- Date: Tue, 5 May 2020 17:44:40 GMT
- Title: Classification-Based Anomaly Detection for General Data
- Authors: Liron Bergman and Yedid Hoshen
- Abstract summary: We present a unifying view and propose an open-set method, GOAD, to relax current assumptions.
We extend the applicability of transformation-based methods to non-image data using random affine transformations.
Our method is shown to obtain state-of-the-art accuracy and is applicable to broad data types.
- Score: 37.31168012111834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection, finding patterns that substantially deviate from those
seen previously, is one of the fundamental problems of artificial intelligence.
Recently, classification-based methods were shown to achieve superior results
on this task. In this work, we present a unifying view and propose an open-set
method, GOAD, to relax current generalization assumptions. Furthermore, we
extend the applicability of transformation-based methods to non-image data
using random affine transformations. Our method is shown to obtain
state-of-the-art accuracy and is applicable to broad data types. The strong
performance of our method is extensively validated on multiple datasets from
different domains.
Related papers
- Tackling domain generalization for out-of-distribution endoscopic imaging [1.6377635288143584]
We exploit both style and content information in images to preserve robust and generalizable feature representations.
Our proposed method shows a 13.7% improvement over the baseline DeepLabv3+ and nearly an 8% improvement over recent state-of-the-art (SOTA) methods for the target (different modality) set of the EndoUDA polyp dataset.
arXiv Detail & Related papers (2024-10-18T18:45:13Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Single Domain Generalization via Normalised Cross-correlation Based
Convolutions [14.306250516592304]
Single Domain Generalization aims to train robust models using data from a single source.
We propose a novel operator called XCNorm that computes the normalized cross-correlation between weights and an input feature patch.
We show that deep neural networks composed of this operator are robust to common semantic distribution shifts.
arXiv Detail & Related papers (2023-07-12T04:15:36Z) - Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly
Detection with Scale Learning [11.245813423781415]
We devise novel data-driven supervision for data by introducing a characteristic -- scale -- as data labels.
Scales serve as labels attached to transformed representations, thus offering ample labeled data for neural network training.
This paper further proposes a scale learning-based anomaly detection method.
arXiv Detail & Related papers (2023-05-25T14:48:00Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
We present a method for quantifying disentanglement that only uses the generative model.
We empirically evaluate several state-of-the-art models across multiple datasets.
arXiv Detail & Related papers (2020-06-05T20:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.