Object Style Diffusion for Generalized Object Detection in Urban Scene
- URL: http://arxiv.org/abs/2412.13815v1
- Date: Wed, 18 Dec 2024 13:03:00 GMT
- Title: Object Style Diffusion for Generalized Object Detection in Urban Scene
- Authors: Hao Li, Xiangyuan Yang, Mengzhu Wang, Long Lan, Ke Liang, Xinwang Liu, Kenli Li,
- Abstract summary: We introduce a novel single-domain object detection generalization method, named GoDiff.
By integrating pseudo-target domain data with source domain data, we diversify the training dataset.
Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods.
- Score: 69.04189353993907
- License:
- Abstract: Object detection is a critical task in computer vision, with applications in various domains such as autonomous driving and urban scene monitoring. However, deep learning-based approaches often demand large volumes of annotated data, which are costly and difficult to acquire, particularly in complex and unpredictable real-world environments. This dependency significantly hampers the generalization capability of existing object detection techniques. To address this issue, we introduce a novel single-domain object detection generalization method, named GoDiff, which leverages a pre-trained model to enhance generalization in unseen domains. Central to our approach is the Pseudo Target Data Generation (PTDG) module, which employs a latent diffusion model to generate pseudo-target domain data that preserves source domain characteristics while introducing stylistic variations. By integrating this pseudo data with source domain data, we diversify the training dataset. Furthermore, we introduce a cross-style instance normalization technique to blend style features from different domains generated by the PTDG module, thereby increasing the detector's robustness. Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods, achieving state-of-the-art performance in autonomous driving scenarios.
Related papers
- Improving Generalization Ability for 3D Object Detection by Learning Sparsity-invariant Features [21.761631081209263]
We propose a method to improve the generalization ability for 3D object detection on a single domain.
To learn sparsity-invariant features from a single source domain, we selectively subsample the source data to a specific beam.
We also employ the teacher-student framework to align the Bird's Eye View features for different point clouds densities.
arXiv Detail & Related papers (2025-02-04T13:47:02Z) - GM-DF: Generalized Multi-Scenario Deepfake Detection [49.072106087564144]
Existing face forgery detection usually follows the paradigm of training models in a single domain.
In this paper, we elaborately investigate the generalization capacity of deepfake detection models when jointly trained on multiple face forgery detection datasets.
arXiv Detail & Related papers (2024-06-28T17:42:08Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain.
State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data.
We propose emphStyDeSty, which explicitly accounts for the alignment of the source and pseudo domains in the process of data augmentation.
arXiv Detail & Related papers (2024-06-01T02:41:34Z) - DIGIC: Domain Generalizable Imitation Learning by Causal Discovery [69.13526582209165]
Causality has been combined with machine learning to produce robust representations for domain generalization.
We make a different attempt by leveraging the demonstration data distribution to discover causal features for a domain generalizable policy.
We design a novel framework, called DIGIC, to identify the causal features by finding the direct cause of the expert action from the demonstration data distribution.
arXiv Detail & Related papers (2024-02-29T07:09:01Z) - Prompt-Driven Dynamic Object-Centric Learning for Single Domain
Generalization [61.64304227831361]
Single-domain generalization aims to learn a model from single source domain data to achieve generalized performance on other unseen target domains.
We propose a dynamic object-centric perception network based on prompt learning, aiming to adapt to the variations in image complexity.
arXiv Detail & Related papers (2024-02-28T16:16:51Z) - Domain Generalization of 3D Object Detection by Density-Resampling [14.510085711178217]
Point-cloud-based 3D object detection suffers from performance degradation when encountering data with novel domain gaps.
We propose an SDG method to improve the generalizability of 3D object detection to unseen target domains.
Our work introduces a novel data augmentation method and contributes a new multi-task learning strategy in the methodology.
arXiv Detail & Related papers (2023-11-17T20:01:29Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
Single Domain Generalization tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain.
We propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts.
We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss.
arXiv Detail & Related papers (2023-01-13T12:01:18Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
Video salient object detection (VSOD) is an important task in many vision applications.
We propose an adaptive local-global refinement framework for VSOD.
We show that our weighting methodology can further exploit the feature correlations, thus driving the network to learn more discriminative feature representation.
arXiv Detail & Related papers (2021-04-29T14:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.