論文の概要: Efficient strategies for hierarchical text classification: External
knowledge and auxiliary tasks
- arxiv url: http://arxiv.org/abs/2005.02473v2
- Date: Fri, 22 May 2020 13:08:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 14:07:44.407520
- Title: Efficient strategies for hierarchical text classification: External
knowledge and auxiliary tasks
- Title(参考訳): 階層的テキスト分類のための効率的な戦略 : 外部知識と補助タスク
- Authors: Kervy Rivas Rojas, Gina Bustamante, Arturo Oncevay, Marco A.
Sobrevilla Cabezudo
- Abstract要約: 我々は、あるクラス分類の上位から下位まで、文書のカテゴリを予測するための一連の推論手順を実行する。
効率的なアプローチでは、よく知られた2つの英語データセットにおいて、パラメータを劇的に減らし、過去の研究を上回りました。
- 参考スコア(独自算出の注目度): 3.5557219875516655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In hierarchical text classification, we perform a sequence of inference steps
to predict the category of a document from top to bottom of a given class
taxonomy. Most of the studies have focused on developing novels neural network
architectures to deal with the hierarchical structure, but we prefer to look
for efficient ways to strengthen a baseline model. We first define the task as
a sequence-to-sequence problem. Afterwards, we propose an auxiliary synthetic
task of bottom-up-classification. Then, from external dictionaries, we retrieve
textual definitions for the classes of all the hierarchy's layers, and map them
into the word vector space. We use the class-definition embeddings as an
additional input to condition the prediction of the next layer and in an
adapted beam search. Whereas the modified search did not provide large gains,
the combination of the auxiliary task and the additional input of
class-definitions significantly enhance the classification accuracy. With our
efficient approaches, we outperform previous studies, using a drastically
reduced number of parameters, in two well-known English datasets.
- Abstract(参考訳): 階層的なテキスト分類では、ある分類群の上位から下位までの文書の分類を予測するための一連の推論手順を実行する。
研究の大部分は、階層構造を扱う新しいニューラルネットワークアーキテクチャの開発に重点を置いているが、我々はベースラインモデルを強化する効率的な方法を探すことを好む。
まず、そのタスクをシーケンス対シーケンス問題と定義する。
その後,ボトムアップ分類の補助的合成タスクを提案する。
そして、外部辞書から全ての階層層のクラスに対するテキスト定義を取得し、それらを単語ベクトル空間にマッピングする。
クラス定義埋め込みを付加入力として次の層の予測と適応ビーム探索に使用する。
改良された検索では大きな利得が得られなかったが、補助タスクとクラス定義の追加入力の組み合わせにより、分類精度が著しく向上した。
効率的なアプローチでは、よく知られた2つの英語データセットにおいて、パラメータを劇的に減らし、過去の研究より優れていた。
関連論文リスト
- TELEClass: Taxonomy Enrichment and LLM-Enhanced Hierarchical Text Classification with Minimal Supervision [41.05874642535256]
階層的なテキスト分類は、ラベル分類における各文書を一連のクラスに分類することを目的としている。
初期の研究は、大量の人間の注釈付きデータを必要とする完全または半教師付き手法に重点を置いていた。
我々は、最小限の監督量で階層的なテキスト分類に取り組んでおり、各ノードのクラス名のみを唯一の監督として使用しています。
論文 参考訳(メタデータ) (2024-02-29T22:26:07Z) - Learning-to-Rank Meets Language: Boosting Language-Driven Ordering
Alignment for Ordinal Classification [60.28913031192201]
順序分類のための新しい言語駆動順序付け手法を提案する。
事前学習された視覚言語モデルの最近の発展は、人間の言語におけるリッチな順序性を活用するきっかけとなった。
顔の年齢推定,ヒストリカルカラーイメージ(HCI)分類,美的評価を含む3つの日常的分類課題の実験は,その有望な性能を示す。
論文 参考訳(メタデータ) (2023-06-24T04:11:31Z) - TaxoKnow: Taxonomy as Prior Knowledge in the Loss Function of
Multi-class Classification [1.130757825611188]
本稿では,学習アルゴリズムの損失関数に,階層型分類を明示的正規化器として統合する2つの方法を紹介する。
階層的な分類法により、ニューラルネットワークはクラス上の出力分布を緩和し、少数クラスの上位概念を条件付けする。
論文 参考訳(メタデータ) (2023-05-24T08:08:56Z) - AttriCLIP: A Non-Incremental Learner for Incremental Knowledge Learning [53.32576252950481]
連続学習は、モデルが逐次到着したデータから段階的に知識を学習できるようにすることを目的としている。
本稿では,新しいクラスやタスクの知識を段階的に抽出する,AttriCLIPという非インクリメンタル学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T07:39:17Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - TopicNet: Semantic Graph-Guided Topic Discovery [51.71374479354178]
既存の階層的なトピックモデルでは、教師なしの方法でテキストコーパスから意味論的意味のあるトピックを抽出することができる。
TopicNetを階層的なトピックモデルとして導入し、学習に影響を与えるための帰納的バイアスとして、事前構造知識を注入する。
論文 参考訳(メタデータ) (2021-10-27T09:07:14Z) - TagRec: Automated Tagging of Questions with Hierarchical Learning
Taxonomy [0.0]
オンライン教育プラットフォームは、階層的な学習分類に基づく学術的な質問を組織する
本稿では,分類学と質問のセマンティック関連性を最適化する類似性に基づく検索タスクとして,問題を定式化する。
本研究では,本手法が未確認ラベルの扱いに役立ち,野生の分類学的タグ付けに有効であることを示す。
論文 参考訳(メタデータ) (2021-07-03T11:50:55Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
分類的ラベルが自然な階層に従ったアプリケーションでは、ラベル構造を利用する分類方法は、そうでないものをしばしば上回る。
本稿では,フラット分類器に対する分類性能を向上できる階層構造を誘導する手法のクラスについて検討する。
原理シミュレーションと3つの実データアプリケーションにおいて、潜入階層の発見と精度向上のためのメソッドのクラスの有効性を実証する。
論文 参考訳(メタデータ) (2021-02-20T05:40:42Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
提案手法は,Recall@50において,複数の最先端ベースラインを大きなマージン(最大33%の相対利得)で改善することができる。
実験により,提案手法により,最先端のベースラインを大きなマージンで改善できることが示された。
論文 参考訳(メタデータ) (2020-09-12T17:36:53Z) - Rank over Class: The Untapped Potential of Ranking in Natural Language
Processing [8.637110868126546]
我々は、現在分類を用いて対処されている多くのタスクが、実際には分類モールドに切り替わっていると論じる。
本稿では,一対のテキストシーケンスの表現を生成するトランスフォーマーネットワークからなる新しいエンドツーエンドランキング手法を提案する。
重く歪んだ感情分析データセットの実験では、ランキング結果を分類ラベルに変換すると、最先端のテキスト分類よりも約22%改善する。
論文 参考訳(メタデータ) (2020-09-10T22:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。