論文の概要: Partly Supervised Multitask Learning
- arxiv url: http://arxiv.org/abs/2005.02523v1
- Date: Tue, 5 May 2020 22:42:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 14:16:13.772049
- Title: Partly Supervised Multitask Learning
- Title(参考訳): マルチタスク学習を一部指導する
- Authors: Abdullah-Al-Zubaer Imran, Chao Huang, Hui Tang, Wei Fan, Yuan Xiao,
Dingjun Hao, Zhen Qian, Demetri Terzopoulos
- Abstract要約: 胸部X線データを用いた実験結果から,S$4$MTLモデルは半教師付き単一タスク,半教師付きマルチタスク,完全教師付き単一タスクモデルよりも優れていたことが示唆された。
提案手法は, 医用画像領域だけでなく, 汎用視覚タスクにも有効である, という仮説を立てる。
- 参考スコア(独自算出の注目度): 19.64371980996412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning has recently been attracting attention as an
alternative to fully supervised models that require large pools of labeled
data. Moreover, optimizing a model for multiple tasks can provide better
generalizability than single-task learning. Leveraging self-supervision and
adversarial training, we propose a novel general purpose semi-supervised,
multiple-task model---namely, self-supervised, semi-supervised, multitask
learning (S$^4$MTL)---for accomplishing two important tasks in medical imaging,
segmentation and diagnostic classification. Experimental results on chest and
spine X-ray datasets suggest that our S$^4$MTL model significantly outperforms
semi-supervised single task, semi/fully-supervised multitask, and
fully-supervised single task models, even with a 50\% reduction of class and
segmentation labels. We hypothesize that our proposed model can be effective in
tackling limited annotation problems for joint training, not only in medical
imaging domains, but also for general-purpose vision tasks.
- Abstract(参考訳): 近年,ラベル付きデータのプールを必要とする完全教師付きモデルの代替として,半教師付き学習が注目されている。
さらに、複数のタスクに対するモデルの最適化は、シングルタスク学習よりも優れた一般化性を提供する。
自己超越的・逆行的訓練を生かして,医療画像,セグメンテーション,診断の2つの重要なタスクを達成すべく,新しい汎用半教師型・マルチタスクモデル,すなわち,自己教師型・半教師型・マルチタスク学習(S$4$MTL)を提案する。
胸部X線データを用いた実験結果から,S$4$MTLモデルの方が半教師付き単一タスク,半教師付きマルチタスク,完全教師付き単一タスクモデルよりも優れており,クラスやセグメンテーションラベルが50%削減されていることが示唆された。
提案モデルは, 医用画像領域だけでなく, 汎用視覚タスクにおいても, 限定的なアノテーション問題に取り組む上で有効であると仮定した。
関連論文リスト
- Overcoming Data Scarcity in Biomedical Imaging with a Foundational
Multi-Task Model [2.5994154212235685]
大規模に事前訓練された基礎モデルは、医療以外の領域でかなりの成功を収めている。
本稿では,メモリ要件からトレーニングタスク数を分離するマルチタスク学習戦略を提案する。
論文 参考訳(メタデータ) (2023-11-16T12:20:25Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Many tasks make light work: Learning to localise medical anomalies from
multiple synthetic tasks [2.912977051718473]
シングルクラスモデリングとアウト・オブ・ディストリビューション検出への関心が高まっている。
完全な教師付き機械学習モデルは、トレーニングに含まれていないクラスを確実に識別することはできない。
我々は,複数の視覚的に識別可能な合成異常学習タスクを,トレーニングと検証の両方に利用している。
論文 参考訳(メタデータ) (2023-07-03T09:52:54Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
本稿では、複数の視覚タスクを実行でき、他の下流タスクに効率的に適応できるモデルを提案する。
提案手法は,単一タスク状態モデルに匹敵する結果を達成し,下流タスクの強力な一般化を実証する。
論文 参考訳(メタデータ) (2023-06-29T17:59:57Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
マルチタスク学習は、目標タスクを補助タスクと協調的に最適化することで、より優れたモデル一般化を約束する。
自己監督型(補助的)タスクと密接な予測(目標)タスクを共同でトレーニングすることで、目標タスクの性能を継続的に向上し、補助タスクのラベル付けの必要性を排除できることが判明した。
論文 参考訳(メタデータ) (2022-10-13T17:59:16Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - Explaining the Effectiveness of Multi-Task Learning for Efficient
Knowledge Extraction from Spine MRI Reports [2.5953185061765884]
一つのマルチタスクモデルがタスク固有のモデルの性能にマッチすることを示す。
内科医による頚椎, 腰椎への注視所見について検討した。
論文 参考訳(メタデータ) (2022-05-06T01:51:19Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z) - Multi-Task Self-Training for Learning General Representations [97.01728635294879]
マルチタスク・セルフトレーニング(MuST)は、独立した専門教師モデルにおける知識を活用して、一人の一般学生モデルを訓練する。
MuSTはラベルなしまたは部分的にラベル付けされたデータセットでスケーラブルで、大規模データセットのトレーニングにおいて、特別な教師付きモデルとセルフ教師付きモデルの両方を上回っている。
論文 参考訳(メタデータ) (2021-08-25T17:20:50Z) - MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical
Images [13.690075845927606]
本稿では,病気の分類と解剖学的分類を軽視的に学習する新しいマルチタスク学習モデルであるMultiMixを提案する。
胸部X線画像からの肺炎の分類と肺の分画に対するマルチタスキングモデルの有効性について検討した。
論文 参考訳(メタデータ) (2020-10-28T03:47:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。