論文の概要: Learning to Understand Child-directed and Adult-directed Speech
- arxiv url: http://arxiv.org/abs/2005.02721v4
- Date: Fri, 16 Jul 2021 15:25:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 05:33:41.183052
- Title: Learning to Understand Child-directed and Adult-directed Speech
- Title(参考訳): 子ども向け・成人向け音声の理解
- Authors: Lieke Gelderloos, Grzegorz Chrupa{\l}a, Afra Alishahi
- Abstract要約: 人間の言語習得研究は、児童指向の音声が言語学習者に役立つことを示している。
成人指向音声(ADS)と子ども指向音声(CDS)で訓練されたモデルのタスク性能の比較を行った。
CDSが学習の初期段階で有効であることを示す指標が得られたが、最終的には、ADSでトレーニングされたモデルは、同等のタスクパフォーマンスに達し、より一般化される。
- 参考スコア(独自算出の注目度): 18.29692441616062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech directed to children differs from adult-directed speech in linguistic
aspects such as repetition, word choice, and sentence length, as well as in
aspects of the speech signal itself, such as prosodic and phonemic variation.
Human language acquisition research indicates that child-directed speech helps
language learners. This study explores the effect of child-directed speech when
learning to extract semantic information from speech directly. We compare the
task performance of models trained on adult-directed speech (ADS) and
child-directed speech (CDS). We find indications that CDS helps in the initial
stages of learning, but eventually, models trained on ADS reach comparable task
performance, and generalize better. The results suggest that this is at least
partially due to linguistic rather than acoustic properties of the two
registers, as we see the same pattern when looking at models trained on
acoustically comparable synthetic speech.
- Abstract(参考訳): 子供に向けられた音声は、反復、単語選択、文長といった言語的な側面や、韻律や音韻の変化といった音声信号自体の側面において、大人指向の音声とは異なる。
言語習得研究は、子ども向け音声が言語学習に役立つことを示している。
本研究は, 音声から直接意味情報を抽出する学習において, 児童指向音声の効果について検討する。
成人指向音声(ADS)と子ども指向音声(CDS)で訓練されたモデルのタスク性能を比較した。
CDSが学習の初期段階で有効であることを示す指標が得られたが、最終的には、ADSでトレーニングされたモデルは、同等のタスクパフォーマンスに達し、より一般化される。
その結果,2つのレジスタの音響的特性よりも少なくとも部分的に言語的特性が原因であることが示唆された。
関連論文リスト
- Cross-lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models [16.0617753653454]
本研究では,人間のパフォーマンスとSSLモデルの比較分析を行った。
また、モデルと人間のSER能力を発話レベルとセグメントレベルの両方で比較する。
その結果,適切な知識伝達を行うモデルでは,対象言語に適応し,ネイティブ話者に匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-09-25T13:27:17Z) - Speech2rtMRI: Speech-Guided Diffusion Model for Real-time MRI Video of the Vocal Tract during Speech [29.510756530126837]
音声中の人間の声道のMRIビデオにおいて,音声を視覚的に表現するデータ駆動方式を提案する。
先行知識に埋め込まれた大規模な事前学習音声モデルを用いて、視覚領域を一般化し、見当たらないデータを生成する。
論文 参考訳(メタデータ) (2024-09-23T20:19:24Z) - Improved Child Text-to-Speech Synthesis through Fastpitch-based Transfer
Learning [3.5032870024762386]
本稿では,Fastpitch text-to-speech(TTS)モデルを用いて,高品質な合成子音声を生成する手法を提案する。
このアプローチでは、子話を扱うためにマルチスピーカーTSモデルを微調整する。
実子声と合成子声の間に有意な相関が認められた客観的評価を行った。
論文 参考訳(メタデータ) (2023-11-07T19:31:44Z) - Audio-Visual Neural Syntax Acquisition [91.14892278795892]
視覚的音声からの句構造誘導について検討する。
本稿では,音声を聴いたり,画像を見たりすることでフレーズ構造を学習するAV-NSL(Audio-Visual Neural Syntax Learner)について述べる。
論文 参考訳(メタデータ) (2023-10-11T16:54:57Z) - Do self-supervised speech and language models extract similar
representations as human brain? [2.390915090736061]
自己教師付き学習(SSL)によって訓練された音声と言語モデルは、音声と言語知覚の間の脳活動と強い整合性を示す。
我々は2つの代表的なSSLモデルであるWav2Vec2.0とGPT-2の脳波予測性能を評価した。
論文 参考訳(メタデータ) (2023-10-07T01:39:56Z) - Improving Children's Speech Recognition by Fine-tuning Self-supervised
Adult Speech Representations [2.2191297646252646]
幼児の音声認識は、包括的音声認識技術を構築する際には不可欠だが、ほとんど見過ごされる領域である。
近年の自己教師型学習の進歩は、このデータ不足の問題を克服する新たな機会を生み出している。
子どもの音声認識のためのモデルを構築するために,自己指導型成人音声表現を活用し,よく知られた幼児音声コーパスを3つ利用した。
論文 参考訳(メタデータ) (2022-11-14T22:03:36Z) - M-SpeechCLIP: Leveraging Large-Scale, Pre-Trained Models for
Multilingual Speech to Image Retrieval [56.49878599920353]
本研究は,多言語画像音声検索におけるCLIPとHuBERTの大規模,英語のみの事前学習モデル(CLIPとHuBERT)の利用について検討する。
非英語画像音声検索では、各言語毎に個別のモデルを訓練する場合と、3言語すべてで音声を処理する1つのモデルの両方において、最先端のパフォーマンスを幅広いマージンで上回ります。
論文 参考訳(メタデータ) (2022-11-02T14:54:45Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - Perception Point: Identifying Critical Learning Periods in Speech for
Bilingual Networks [58.24134321728942]
ディープニューラルベース視覚唇読解モデルにおける認知的側面を比較し,識別する。
我々は、認知心理学におけるこれらの理論と独自のモデリングの間に強い相関関係を観察する。
論文 参考訳(メタデータ) (2021-10-13T05:30:50Z) - Mandarin-English Code-switching Speech Recognition with Self-supervised
Speech Representation Models [55.82292352607321]
コードスイッチング(英: Code-switching, CS)は、複数の言語が文内で使用される日常会話において一般的である。
本稿では、最近成功した自己教師付き学習(SSL)手法を用いて、CSを使わずに多くのラベルなし音声データを活用する。
論文 参考訳(メタデータ) (2021-10-07T14:43:35Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。