Unsupervised Neural Aspect Search with Related Terms Extraction
- URL: http://arxiv.org/abs/2005.02771v1
- Date: Wed, 6 May 2020 12:39:45 GMT
- Title: Unsupervised Neural Aspect Search with Related Terms Extraction
- Authors: Timur Sokhin, Maria Khodorchenko, and Nikolay Butakov
- Abstract summary: We present a novel unsupervised neural network with convolutional multi-attention mechanism, that allows extracting pairs (aspect, term) simultaneously.
We apply a special loss aimed to improve the quality of multi-aspect extraction.
- Score: 0.3670422696827526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The tasks of aspect identification and term extraction remain challenging in
natural language processing. While supervised methods achieve high scores, it
is hard to use them in real-world applications due to the lack of labelled
datasets. Unsupervised approaches outperform these methods on several tasks,
but it is still a challenge to extract both an aspect and a corresponding term,
particularly in the multi-aspect setting. In this work, we present a novel
unsupervised neural network with convolutional multi-attention mechanism, that
allows extracting pairs (aspect, term) simultaneously, and demonstrate the
effectiveness on the real-world dataset. We apply a special loss aimed to
improve the quality of multi-aspect extraction. The experimental study
demonstrates, what with this loss we increase the precision not only on this
joint setting but also on aspect prediction only.
Related papers
- Few-Shot Anomaly Detection with Adversarial Loss for Robust Feature
Representations [8.915958745269442]
Anomaly detection is a critical and challenging task that aims to identify data points deviating from normal patterns and distributions within a dataset.
Various methods have been proposed using a one-class-one-model approach, but these techniques often face practical problems such as memory inefficiency and the requirement of sufficient data for training.
We propose a few-shot anomaly detection method that integrates adversarial training loss to obtain more robust and generalized feature representations.
arXiv Detail & Related papers (2023-12-04T09:45:02Z) - A Simple Solution for Offline Imitation from Observations and Examples
with Possibly Incomplete Trajectories [122.11358440078581]
offline imitation is useful in real-world scenarios where arbitrary interactions are costly and expert actions are unavailable.
We propose Trajectory-Aware Learning from Observations (TAILO) to solve MDPs where only task-specific expert states and task-agnostic non-expert state-action pairs are available.
arXiv Detail & Related papers (2023-11-02T15:41:09Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
We propose new constrained pretext tasks to learn object level normality patterns.
Our approach consists in learning a mapping between down-scaled visual queries and their corresponding normal appearance and motion characteristics.
Experiments on several benchmark datasets demonstrate the effectiveness of our approach to localize and track anomalies.
arXiv Detail & Related papers (2022-10-27T19:45:12Z) - nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation
Methods [4.31513157813239]
nnOOD adapts nnU-Net to allow for comparison of self-supervised anomaly localisation methods.
We implement the current state-of-the-art tasks and evaluate them on a challenging X-ray dataset.
arXiv Detail & Related papers (2022-09-02T15:34:02Z) - AntPivot: Livestream Highlight Detection via Hierarchical Attention
Mechanism [64.70568612993416]
We formulate a new task Livestream Highlight Detection, discuss and analyze the difficulties listed above and propose a novel architecture AntPivot to solve this problem.
We construct a fully-annotated dataset AntHighlight to instantiate this task and evaluate the performance of our model.
arXiv Detail & Related papers (2022-06-10T05:58:11Z) - Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image
Segmentation [4.935055133266873]
We propose a novel uncertainty-aware scheme to make models learn regions purposefully.
Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map.
In the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network.
arXiv Detail & Related papers (2021-11-23T03:26:24Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - Scribble-Supervised Semantic Segmentation by Uncertainty Reduction on
Neural Representation and Self-Supervision on Neural Eigenspace [21.321005898976253]
Scribble-supervised semantic segmentation has gained much attention recently for its promising performance without high-quality annotations.
This work aims to achieve semantic segmentation by scribble annotations directly without extra information and other limitations.
We propose holistic operations, including minimizing entropy and a network embedded random walk on neural representation to reduce uncertainty.
arXiv Detail & Related papers (2021-02-19T12:33:57Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
Video anomaly is a challenging task because it involves solving many sub-tasks such as motion representation, object localization and action recognition.
Traditionally, solutions to this task have focused on the mapping between video frames and their low-dimensional features, while ignoring the spatial connections of those features.
Recent solutions focus on analyzing these spatial connections by using hard clustering techniques, such as K-Means, or applying neural networks to map latent features to a general understanding.
In order to solve video anomaly in the latent feature space, we propose a deep probabilistic model to transfer this task into a density estimation problem.
arXiv Detail & Related papers (2020-12-02T19:16:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.