Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image
Segmentation
- URL: http://arxiv.org/abs/2111.11629v1
- Date: Tue, 23 Nov 2021 03:26:24 GMT
- Title: Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image
Segmentation
- Authors: Xu Zheng, Chong Fu, Haoyu Xie, Jialei Chen, Xingwei Wang and Chiu-Wing
Sham
- Abstract summary: We propose a novel uncertainty-aware scheme to make models learn regions purposefully.
Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map.
In the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network.
- Score: 4.935055133266873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning has made significant strides in the medical domain
since it alleviates the heavy burden of collecting abundant pixel-wise
annotated data for semantic segmentation tasks. Existing semi-supervised
approaches enhance the ability to extract features from unlabeled data with
prior knowledge obtained from limited labeled data. However, due to the
scarcity of labeled data, the features extracted by the models are limited in
supervised learning, and the quality of predictions for unlabeled data also
cannot be guaranteed. Both will impede consistency training. To this end, we
proposed a novel uncertainty-aware scheme to make models learn regions
purposefully. Specifically, we employ Monte Carlo Sampling as an estimation
method to attain an uncertainty map, which can serve as a weight for losses to
force the models to focus on the valuable region according to the
characteristics of supervised learning and unsupervised learning.
Simultaneously, in the backward process, we joint unsupervised and supervised
losses to accelerate the convergence of the network via enhancing the gradient
flow between different tasks. Quantitatively, we conduct extensive experiments
on three challenging medical datasets. Experimental results show desirable
improvements to state-of-the-art counterparts.
Related papers
- Unsupervised Transfer Learning via Adversarial Contrastive Training [3.227277661633986]
We propose a novel unsupervised transfer learning approach using adversarial contrastive training (ACT)
Our experimental results demonstrate outstanding classification accuracy with both fine-tuned linear probe and K-NN protocol across various datasets.
arXiv Detail & Related papers (2024-08-16T05:11:52Z) - Leveraging Unlabeled Data for 3D Medical Image Segmentation through
Self-Supervised Contrastive Learning [3.7395287262521717]
Current 3D semi-supervised segmentation methods face significant challenges such as limited consideration of contextual information.
We introduce two distinctworks designed to explore and exploit the discrepancies between them, ultimately correcting the erroneous prediction results.
We employ a self-supervised contrastive learning paradigm to distinguish between reliable and unreliable predictions.
arXiv Detail & Related papers (2023-11-21T14:03:16Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Uncertain Facial Expression Recognition via Multi-task Assisted
Correction [43.02119884581332]
We propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC.
Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch.
Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties.
arXiv Detail & Related papers (2022-12-14T10:28:08Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
We present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance.
Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability.
arXiv Detail & Related papers (2021-10-15T16:38:54Z) - Belief function-based semi-supervised learning for brain tumor
segmentation [23.21410263735263]
Deep learning makes it possible to detect and segment a lesion field using annotated data.
However, obtaining precisely annotated data is very challenging in the medical domain.
In this paper, we address the uncertain boundary problem by a new evidential neural network with an information fusion strategy.
arXiv Detail & Related papers (2021-01-29T22:39:16Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.