論文の概要: Group Heterogeneity Assessment for Multilevel Models
- arxiv url: http://arxiv.org/abs/2005.02773v1
- Date: Wed, 6 May 2020 12:42:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 06:17:41.754231
- Title: Group Heterogeneity Assessment for Multilevel Models
- Title(参考訳): 多レベルモデルのグループ不均一性評価
- Authors: Topi Paananen, Alejandro Catalina, Paul-Christian B\"urkner, Aki
Vehtari
- Abstract要約: 多くのデータセットは固有のマルチレベル構造を含む。
この構造を考慮に入れることは、そのようなデータ上で行われた統計分析の正確性と校正にとって重要である。
本稿では,データ内のグループ化変数のレベルの違いを効率的に評価するフレキシブルなフレームワークを提案する。
- 参考スコア(独自算出の注目度): 68.95633278540274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many data sets contain an inherent multilevel structure, for example, because
of repeated measurements of the same observational units. Taking this structure
into account is critical for the accuracy and calibration of any statistical
analysis performed on such data. However, the large number of possible model
configurations hinders the use of multilevel models in practice. In this work,
we propose a flexible framework for efficiently assessing differences between
the levels of given grouping variables in the data. The assessed group
heterogeneity is valuable in choosing the relevant group coefficients to
consider in a multilevel model. Our empirical evaluations demonstrate that the
framework can reliably identify relevant multilevel components in both
simulated and real data sets.
- Abstract(参考訳): 多くのデータセットは、例えば同じ観測単位の繰り返し測定のため、固有のマルチレベル構造を含んでいる。
この構造を考慮に入れることは、そのようなデータ上で行われる統計解析の正確性とキャリブレーションに不可欠である。
しかし、可能なモデル構成の多さは、実際にはマルチレベルモデルの使用を妨げる。
本研究では,データ内のグループ化変数のレベルの違いを効率的に評価するフレキシブルなフレームワークを提案する。
評価された群不均質性は、多レベルモデルで考慮すべき関連する群係数を選択するのに有用である。
実験結果から,シミュレーションデータと実データの両方において,関連するマルチレベルコンポーネントを確実に識別できることが確認された。
関連論文リスト
- Area under the ROC Curve has the Most Consistent Evaluation for Binary Classification [3.1850615666574806]
本研究では、異なるデータシナリオ下で異なるモデルを評価する上で、一貫性のあるメトリクスがどのように存在するかを検討する。
バイナリ分類タスクの場合、有病率の影響を受けない評価指標は、異なるモデルの集合の一貫性のあるランキングを提供する。
論文 参考訳(メタデータ) (2024-08-19T17:52:38Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - HiPerformer: Hierarchically Permutation-Equivariant Transformer for Time
Series Forecasting [56.95572957863576]
本稿では,同じ群を構成する成分間の関係と群間の関係を考察した階層的置換同変モデルを提案する。
実世界のデータを用いた実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-05-14T05:11:52Z) - Statistical Comparisons of Classifiers by Generalized Stochastic
Dominance [0.0]
いくつかの基準に関して、分類器を複数のデータセットで比較する方法については、まだ合意が得られていない。
本稿では, 意思決定理論の最近の展開を取り入れた, 鮮明な議論に新たな視点を加える。
我々のフレームワークは、支配という一般化された概念によって分類器をランク付けし、それは煩雑なものを強力に回避し、しばしば自己矛盾的であり、集約に依存していることを示している。
論文 参考訳(メタデータ) (2022-09-05T09:28:15Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - HAWKS: Evolving Challenging Benchmark Sets for Cluster Analysis [2.5329716878122404]
クラスタリングアルゴリズムの包括的なベンチマークは難しい。
厳格なベンチマークのベストプラクティスに関する合意はありません。
このようなベンチマークのフレキシブルな生成を支援するために,進化的アルゴリズムが果たす重要な役割を実証する。
論文 参考訳(メタデータ) (2021-02-13T15:01:34Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Blocked Clusterwise Regression [0.0]
我々は、各ユニットが複数の潜伏変数を持つことを可能にすることで、離散的非観測的不均一性に対する以前のアプローチを一般化する。
我々は,クラスタの過剰な数のクラスタリングの理論に寄与し,この設定に対する新たな収束率を導出する。
論文 参考訳(メタデータ) (2020-01-29T23:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。