Token Manipulation Generative Adversarial Network for Text Generation
- URL: http://arxiv.org/abs/2005.02794v2
- Date: Mon, 11 May 2020 12:17:28 GMT
- Title: Token Manipulation Generative Adversarial Network for Text Generation
- Authors: DaeJin Jo
- Abstract summary: We decompose conditional text generation problem into two tasks, make-a-blank and fill-in-the-blank, and extend the former to handle more complex manipulations on the given tokens.
We show that the proposed model not only addresses the limitations but also provides good results without compromising the performance in terms of quality and diversity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MaskGAN opens the query for the conditional language model by filling in the
blanks between the given tokens. In this paper, we focus on addressing the
limitations caused by having to specify blanks to be filled. We decompose
conditional text generation problem into two tasks, make-a-blank and
fill-in-the-blank, and extend the former to handle more complex manipulations
on the given tokens. We cast these tasks as a hierarchical multi agent RL
problem and introduce a conditional adversarial learning that allows the agents
to reach a goal, producing realistic texts, in cooperative setting. We show
that the proposed model not only addresses the limitations but also provides
good results without compromising the performance in terms of quality and
diversity.
Related papers
- Graph-DPEP: Decomposed Plug and Ensemble Play for Few-Shot Document Relation Extraction with Graph-of-Thoughts Reasoning [34.85741925091139]
Graph-DPEP framework is grounded in the reasoning behind triplet explanation thoughts presented in natural language.
We develop "ensemble-play", reapplying generation on the entire type list by leveraging the reasoning thoughts embedded in a sub-graph.
arXiv Detail & Related papers (2024-11-05T07:12:36Z) - STORE: Streamlining Semantic Tokenization and Generative Recommendation with A Single LLM [59.08493154172207]
We propose a unified framework to streamline the semantic tokenization and generative recommendation process.
We formulate semantic tokenization as a text-to-token task and generative recommendation as a token-to-token task, supplemented by a token-to-text reconstruction task and a text-to-token auxiliary task.
All these tasks are framed in a generative manner and trained using a single large language model (LLM) backbone.
arXiv Detail & Related papers (2024-09-11T13:49:48Z) - Empowering Character-level Text Infilling by Eliminating Sub-Tokens [34.37743927032878]
FIM-SE stands for Fill-In-the-Middle with both Starting and Ending character constraints.
We introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints.
arXiv Detail & Related papers (2024-05-27T12:21:48Z) - Token Alignment via Character Matching for Subword Completion [34.76794239097628]
This paper examines a technique to alleviate the tokenization artifact on text completion in generative models.
The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt.
arXiv Detail & Related papers (2024-03-13T16:44:39Z) - TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models [69.49978333446538]
TEAL is an approach to treat the input from any modality as a token sequence.
It embeds the token sequence into a joint embedding space with a learnable embedding matrix.
Experiments show that TEAL achieves substantial improvements in multi-modal understanding.
arXiv Detail & Related papers (2023-11-08T10:34:16Z) - AWTE-BERT:Attending to Wordpiece Tokenization Explicitly on BERT for
Joint Intent Classification and SlotFilling [5.684659127683238]
BERT (Bidirectional Representations from Transformers) achieves the joint optimization of the two tasks.
We propose a novel joint model based on BERT, which explicitly models the multiple sub-tokens features after wordpiece tokenization.
Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy.
arXiv Detail & Related papers (2022-11-27T13:49:19Z) - DisCup: Discriminator Cooperative Unlikelihood Prompt-tuning for
Controllable Text Generation [6.844825905212349]
We propose a new CTG approach, namely DisCup, which incorporates the attribute knowledge of discriminator to optimize the control-prompts.
DisCup can achieve a new state-of-the-art control performance while maintaining an efficient and high-quality text generation, only relying on around 10 virtual tokens.
arXiv Detail & Related papers (2022-10-18T02:59:06Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
Recent state-of-the-art neural text matching models (PLMs) are hard to generalize to different tasks.
We adopt a specialization-generalization training strategy and refer to it as Match-Prompt.
In specialization stage, descriptions of different matching tasks are mapped to only a few prompt tokens.
In generalization stage, text matching model explores the essential matching signals by being trained on diverse multiple matching tasks.
arXiv Detail & Related papers (2022-04-06T11:01:08Z) - Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing [110.4684789199555]
We introduce scenario-based semantic parsing: a variant of the original task which first requires disambiguating an utterance's "scenario"
This formulation enables us to isolate coarse-grained and fine-grained aspects of the task, each of which we solve with off-the-shelf neural modules.
Our model is modular, differentiable, interpretable, and allows us to garner extra supervision from scenarios.
arXiv Detail & Related papers (2022-02-02T08:00:21Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
We focus on the Commongen benchmark, wherein the aim is to generate a plausible sentence for a given set of input concepts.
We propose strategies for enhancing the semantic correctness of the generated text.
arXiv Detail & Related papers (2020-12-19T23:23:40Z) - Enabling Language Models to Fill in the Blanks [81.59381915581892]
We present a simple approach for text infilling, the task of predicting missing spans of text at any position in a document.
We train (or fine-tune) off-the-shelf language models on sequences containing the concatenation of artificially-masked text and the text which was masked.
We show that this approach, which we call infilling by language modeling, can enable LMs to infill entire sentences effectively on three different domains: short stories, scientific abstracts, and lyrics.
arXiv Detail & Related papers (2020-05-11T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.