Multitask Models for Supervised Protests Detection in Texts
- URL: http://arxiv.org/abs/2005.02954v1
- Date: Wed, 6 May 2020 17:00:46 GMT
- Title: Multitask Models for Supervised Protests Detection in Texts
- Authors: Benjamin J. Radford
- Abstract summary: I apply multitask neural networks capable of producing predictions for two and three of these tasks simultaneously.
This paper demonstrates performance near or above the reported state-of-the-art for automated political event coding.
- Score: 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The CLEF 2019 ProtestNews Lab tasks participants to identify text relating to
political protests within larger corpora of news data. Three tasks include
article classification, sentence detection, and event extraction. I apply
multitask neural networks capable of producing predictions for two and three of
these tasks simultaneously. The multitask framework allows the model to learn
relevant features from the training data of all three tasks. This paper
demonstrates performance near or above the reported state-of-the-art for
automated political event coding though noted differences in research design
make direct comparisons difficult.
Related papers
- Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
arXiv Detail & Related papers (2024-10-07T17:59:48Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR) is a single model to retrieve demonstrations for a wide range of tasks.
We propose a multi-task list-wise ranking training framework, with an iterative mining strategy to find high-quality candidates.
Experiments on 30+ tasks across 13 task families and multiple data domains show that UDR significantly outperforms baselines.
arXiv Detail & Related papers (2023-05-07T16:07:11Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
We compare sequential fine-tuning with a model for multi-task learning in the context of boosting performance on two tasks.
Our results show that while sequential multi-task learning can be tuned to be good at the first of two target tasks, it performs less well on the second and additionally struggles with overfitting.
arXiv Detail & Related papers (2022-10-31T13:26:08Z) - FETA: A Benchmark for Few-Sample Task Transfer in Open-Domain Dialogue [70.65782786401257]
This work explores conversational task transfer by introducing FETA: a benchmark for few-sample task transfer in open-domain dialogue.
FETA contains two underlying sets of conversations upon which there are 10 and 7 tasks annotated, enabling the study of intra-dataset task transfer.
We utilize three popular language models and three learning algorithms to analyze the transferability between 132 source-target task pairs.
arXiv Detail & Related papers (2022-05-12T17:59:00Z) - Rethinking the Role of Demonstrations: What Makes In-Context Learning
Work? [112.72413411257662]
Large language models (LMs) are able to in-context learn by conditioning on a few input-label pairs (demonstrations) and making predictions for new inputs.
We show that ground truth demonstrations are in fact not required -- randomly replacing labels in the demonstrations barely hurts performance.
We find that other aspects of the demonstrations are the key drivers of end task performance.
arXiv Detail & Related papers (2022-02-25T17:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.