Fact-based Dialogue Generation with Convergent and Divergent Decoding
- URL: http://arxiv.org/abs/2005.03174v2
- Date: Fri, 8 May 2020 00:43:36 GMT
- Title: Fact-based Dialogue Generation with Convergent and Divergent Decoding
- Authors: Ryota Tanaka, Akinobu Lee
- Abstract summary: This paper proposes an end-to-end fact-based dialogue system augmented with the ability of convergent and divergent thinking.
Our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses.
- Score: 2.28438857884398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fact-based dialogue generation is a task of generating a human-like response
based on both dialogue context and factual texts. Various methods were proposed
to focus on generating informative words that contain facts effectively.
However, previous works implicitly assume a topic to be kept on a dialogue and
usually converse passively, therefore the systems have a difficulty to generate
diverse responses that provide meaningful information proactively. This paper
proposes an end-to-end fact-based dialogue system augmented with the ability of
convergent and divergent thinking over both context and facts, which can
converse about the current topic or introduce a new topic. Specifically, our
model incorporates a novel convergent and divergent decoding that can generate
informative and diverse responses considering not only given inputs (context
and facts) but also inputs-related topics. Both automatic and human evaluation
results on DSTC7 dataset show that our model significantly outperforms
state-of-the-art baselines, indicating that our model can generate more
appropriate, informative, and diverse responses.
Related papers
- Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
This study provides a comprehensive overview of the primary characteristics of a dialogue agent, their corresponding open-domain datasets, and the methods used to benchmark these datasets.
We propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them.
arXiv Detail & Related papers (2023-07-14T10:05:47Z) - Taxonomy of Abstractive Dialogue Summarization: Scenarios, Approaches
and Future Directions [14.85592662663867]
This survey provides a comprehensive investigation on existing work for abstractive dialogue summarization from scenarios.
It categorizes the task into two broad categories according to the type of input dialogues, i.e., open-domain and task-oriented.
It presents a taxonomy of existing techniques in three directions, namely, injecting dialogue features, designing auxiliary training tasks and using additional data.
arXiv Detail & Related papers (2022-10-18T14:33:03Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables.
The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions.
arXiv Detail & Related papers (2022-04-28T00:52:16Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - Dialogue Inspectional Summarization with Factual Inconsistency Awareness [34.97845384948336]
We investigate the factual inconsistency problem for Dialogue Inspectional Summarization (DIS) under non-pretraining and pretraining settings.
An innovative end-to-end dialogue summary generation framework is proposed with two auxiliary tasks.
Comprehensive experiments demonstrate that the proposed model can generate a more readable summary with accurate coverage of factual aspects.
arXiv Detail & Related papers (2021-11-05T06:26:22Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
This work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives.
Experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines.
arXiv Detail & Related papers (2021-09-10T17:03:25Z) - Coreference-Aware Dialogue Summarization [24.986030179701405]
We investigate approaches to explicitly incorporate coreference information in neural abstractive dialogue summarization models.
Experimental results show that the proposed approaches achieve state-of-the-art performance.
Evaluation results on factual correctness suggest such coreference-aware models are better at tracing the information flow among interlocutors.
arXiv Detail & Related papers (2021-06-16T05:18:50Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
In a customer service system, dialogue summarization can boost service efficiency by creating summaries for long spoken dialogues.
In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries.
We propose a novel topic-augmented two-stage dialogue summarizer ( TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues.
arXiv Detail & Related papers (2020-12-14T07:50:25Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.