Taxonomy of Abstractive Dialogue Summarization: Scenarios, Approaches
and Future Directions
- URL: http://arxiv.org/abs/2210.09894v2
- Date: Sun, 6 Aug 2023 06:02:06 GMT
- Title: Taxonomy of Abstractive Dialogue Summarization: Scenarios, Approaches
and Future Directions
- Authors: Qi Jia, Yizhu Liu, Siyu Ren, Kenny Q. Zhu
- Abstract summary: This survey provides a comprehensive investigation on existing work for abstractive dialogue summarization from scenarios.
It categorizes the task into two broad categories according to the type of input dialogues, i.e., open-domain and task-oriented.
It presents a taxonomy of existing techniques in three directions, namely, injecting dialogue features, designing auxiliary training tasks and using additional data.
- Score: 14.85592662663867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Abstractive dialogue summarization is to generate a concise and fluent
summary covering the salient information in a dialogue among two or more
interlocutors. It has attracted great attention in recent years based on the
massive emergence of social communication platforms and an urgent requirement
for efficient dialogue information understanding and digestion. Different from
news or articles in traditional document summarization, dialogues bring unique
characteristics and additional challenges, including different language styles
and formats, scattered information, flexible discourse structures and unclear
topic boundaries. This survey provides a comprehensive investigation on
existing work for abstractive dialogue summarization from scenarios, approaches
to evaluations. It categorizes the task into two broad categories according to
the type of input dialogues, i.e., open-domain and task-oriented, and presents
a taxonomy of existing techniques in three directions, namely, injecting
dialogue features, designing auxiliary training tasks and using additional
data.A list of datasets under different scenarios and widely-accepted
evaluation metrics are summarized for completeness. After that, the trends of
scenarios and techniques are summarized, together with deep insights on
correlations between extensively exploited features and different scenarios.
Based on these analyses, we recommend future directions including more
controlled and complicated scenarios, technical innovations and comparisons,
publicly available datasets in special domains, etc.
Related papers
- CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization [7.234196390284036]
This article summarizes the research on Transformer-based abstractive summarization for English dialogues.
We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality)
We find that while some challenges, like language, have seen considerable progress, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities.
arXiv Detail & Related papers (2024-06-11T17:30:22Z) - Long Dialog Summarization: An Analysis [28.223798877781054]
This work emphasizes the significance of creating coherent and contextually rich summaries for effective communication in various applications.
We explore current state-of-the-art approaches for long dialog summarization in different domains and benchmark metrics based evaluations show that one single model does not perform well across various areas for distinct summarization tasks.
arXiv Detail & Related papers (2024-02-26T19:35:45Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
This study provides a comprehensive overview of the primary characteristics of a dialogue agent, their corresponding open-domain datasets, and the methods used to benchmark these datasets.
We propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them.
arXiv Detail & Related papers (2023-07-14T10:05:47Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables.
The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions.
arXiv Detail & Related papers (2022-04-28T00:52:16Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
This work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives.
Experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines.
arXiv Detail & Related papers (2021-09-10T17:03:25Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
In a customer service system, dialogue summarization can boost service efficiency by creating summaries for long spoken dialogues.
In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries.
We propose a novel topic-augmented two-stage dialogue summarizer ( TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues.
arXiv Detail & Related papers (2020-12-14T07:50:25Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - Fact-based Dialogue Generation with Convergent and Divergent Decoding [2.28438857884398]
This paper proposes an end-to-end fact-based dialogue system augmented with the ability of convergent and divergent thinking.
Our model incorporates a novel convergent and divergent decoding that can generate informative and diverse responses.
arXiv Detail & Related papers (2020-05-06T23:49:35Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc.
While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be highly scarce and expensive.
In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks.
arXiv Detail & Related papers (2020-02-27T04:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.