An Optimal Control Theory for the Traveling Salesman Problem and Its
Variants
- URL: http://arxiv.org/abs/2005.03186v1
- Date: Thu, 7 May 2020 00:44:27 GMT
- Title: An Optimal Control Theory for the Traveling Salesman Problem and Its
Variants
- Authors: I. M. Ross, R. J. Proulx, M. Karpenko
- Abstract summary: We show that the traveling salesman problem (TSP) and its many variants may be modeled as functional optimization problems over a graph.
The main advantage of the new approach is that it facilitates the modeling of certain application-specific problems in their home space of measurable functions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the traveling salesman problem (TSP) and its many variants may
be modeled as functional optimization problems over a graph. In this
formulation, all vertices and arcs of the graph are functionals; i.e., a
mapping from a space of measurable functions to the field of real numbers. Many
variants of the TSP, such as those with neighborhoods, with forbidden
neighborhoods, with time-windows and with profits, can all be framed under this
construct. In sharp contrast to their discrete-optimization counterparts, the
modeling constructs presented in this paper represent a fundamentally new
domain of analysis and computation for TSPs and their variants. Beyond its
apparent mathematical unification of a class of problems in graph theory, the
main advantage of the new approach is that it facilitates the modeling of
certain application-specific problems in their home space of measurable
functions. Consequently, certain elements of economic system theory such as
dynamical models and continuous-time cost/profit functionals can be directly
incorporated in the new optimization problem formulation. Furthermore, subtour
elimination constraints, prevalent in discrete optimization formulations, are
naturally enforced through continuity requirements. The price for the new
modeling framework is nonsmooth functionals. Although a number of theoretical
issues remain open in the proposed mathematical framework, we demonstrate the
computational viability of the new modeling constructs over a sample set of
problems to illustrate the rapid production of end-to-end TSP solutions to
extensively-constrained practical problems.
Related papers
- Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
Laplacian regularized stratified models (LRSM) are models that utilize the explicit or implicit network structure of the sub-problems.
This paper shows the importance and sensitivity of graph weights in LRSM, and provably show that the sensitivity can be arbitrarily large.
We propose a generic approach to jointly learn the graph while fitting the model parameters by solving a single optimization problem.
arXiv Detail & Related papers (2023-05-04T06:06:29Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
Book presents several efforts to tackle this challenge with important scientific implications.
It provides alternative optimization schemes that scale well in terms of computational complexity.
We present sparsity-exploiting hierarchies of relaxations, for either unconstrained or constrained problems.
arXiv Detail & Related papers (2022-08-23T18:56:05Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Learning Time-Varying Graphs from Online Data [39.21234914444073]
This work proposes an algorithmic framework to learn time-varying graphs from online data.
It renders it model-independent, i.e., it can be theoretically analyzed in its abstract formulation.
We specialize the framework to three well-known graph learning models, namely, the Gaussian graphical model (GGM), the structural equation model (SEM), and the smoothness-based model (SBM)
arXiv Detail & Related papers (2021-10-21T09:46:44Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem.
In many scenarios, however, numerically meaningful structure is specified in some discrete space leading to difficult non optimization problems.
We show how simple continuous or discrete constraints can also be handled for certain problem classes, motivated by robust optimization.
arXiv Detail & Related papers (2021-02-17T21:14:47Z) - Trace Ratio Optimization with an Application to Multi-view Learning [10.196148937138275]
A trace ratio optimization problem over the Stiefel manifold is investigated.
Special cases of the problem have arisen from Fisher linear discriminant analysis, canonical correlation analysis, and unbalanced Procrustes problem.
A new framework and its instantiated concrete models are proposed and demonstrated.
arXiv Detail & Related papers (2021-01-12T04:38:09Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
junction tree algorithm is the most general solution for exact MAP inference with run-time guarantees.
We propose a new graph transformation technique via node cloning which ensures a run-time for solving our target problem independently of the form of a corresponding clique tree.
arXiv Detail & Related papers (2019-12-27T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.