Trace Ratio Optimization with an Application to Multi-view Learning
- URL: http://arxiv.org/abs/2101.04292v1
- Date: Tue, 12 Jan 2021 04:38:09 GMT
- Title: Trace Ratio Optimization with an Application to Multi-view Learning
- Authors: Li Wang and Lei-Hong Zhang and Ren-Cang Li
- Abstract summary: A trace ratio optimization problem over the Stiefel manifold is investigated.
Special cases of the problem have arisen from Fisher linear discriminant analysis, canonical correlation analysis, and unbalanced Procrustes problem.
A new framework and its instantiated concrete models are proposed and demonstrated.
- Score: 10.196148937138275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A trace ratio optimization problem over the Stiefel manifold is investigated
from the perspectives of both theory and numerical computations. At least three
special cases of the problem have arisen from Fisher linear discriminant
analysis, canonical correlation analysis, and unbalanced Procrustes problem,
respectively. Necessary conditions in the form of nonlinear eigenvalue problem
with eigenvector dependency are established and a numerical method based on the
self-consistent field (SCF) iteration is designed and proved to be always
convergent. As an application to multi-view subspace learning, a new framework
and its instantiated concrete models are proposed and demonstrated on real
world data sets. Numerical results show that the efficiency of the proposed
numerical methods and effectiveness of the new multi-view subspace learning
models.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
Laplacian regularized stratified models (LRSM) are models that utilize the explicit or implicit network structure of the sub-problems.
This paper shows the importance and sensitivity of graph weights in LRSM, and provably show that the sensitivity can be arbitrarily large.
We propose a generic approach to jointly learn the graph while fitting the model parameters by solving a single optimization problem.
arXiv Detail & Related papers (2023-05-04T06:06:29Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Deep Efficient Continuous Manifold Learning for Time Series Modeling [11.876985348588477]
A symmetric positive definite matrix is being studied in computer vision, signal processing, and medical image analysis.
In this paper, we propose a framework to exploit a diffeomorphism mapping between Riemannian manifold and a Cholesky space.
For dynamic modeling of time-series data, we devise a continuous manifold learning method by systematically integrating a manifold ordinary differential equation and a gated recurrent neural network.
arXiv Detail & Related papers (2021-12-03T01:38:38Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
We propose two variants of the Truncated Orthogonal Iteration to compute multiple leading eigenvectors with sparsity constraints simultaneously.
We then apply our algorithms to solve the sparse principle component analysis problem for a wide range of test datasets.
arXiv Detail & Related papers (2021-03-24T23:11:32Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
In model selection problems for machine learning, the desire for a well-performing model with meaningful structure is typically expressed through a regularized optimization problem.
In many scenarios, however, numerically meaningful structure is specified in some discrete space leading to difficult non optimization problems.
We show how simple continuous or discrete constraints can also be handled for certain problem classes, motivated by robust optimization.
arXiv Detail & Related papers (2021-02-17T21:14:47Z) - Orthogonal Multi-view Analysis by Successive Approximations via
Eigenvectors [7.870955752916424]
The framework integrates the correlations within multiple views, supervised discriminant capacity, and distance preservation.
It not only includes several existing models as special cases, but also inspires new novel models.
Experiments are conducted on various real-world datasets for multi-view discriminant analysis and multi-view multi-label classification.
arXiv Detail & Related papers (2020-10-04T17:16:15Z) - Consistency analysis of bilevel data-driven learning in inverse problems [1.0705399532413618]
We consider the adaptive learning of the regularization parameter from data by means of optimization.
We demonstrate how to implement our framework on linear inverse problems.
Online numerical schemes are derived using the gradient descent method.
arXiv Detail & Related papers (2020-07-06T12:23:29Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.