Fair Algorithms for Hierarchical Agglomerative Clustering
- URL: http://arxiv.org/abs/2005.03197v4
- Date: Mon, 31 Jul 2023 03:46:55 GMT
- Title: Fair Algorithms for Hierarchical Agglomerative Clustering
- Authors: Anshuman Chhabra, Prasant Mohapatra
- Abstract summary: Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science.
It is imperative to ensure that these algorithms are fair -- even if the dataset contains biases against certain protected groups.
We propose fair algorithms for performing HAC that enforce fairness constraints.
- Score: 17.66340013352806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical Agglomerative Clustering (HAC) algorithms are extensively
utilized in modern data science, and seek to partition the dataset into
clusters while generating a hierarchical relationship between the data samples.
HAC algorithms are employed in many applications, such as biology, natural
language processing, and recommender systems. Thus, it is imperative to ensure
that these algorithms are fair -- even if the dataset contains biases against
certain protected groups, the cluster outputs generated should not discriminate
against samples from any of these groups. However, recent work in clustering
fairness has mostly focused on center-based clustering algorithms, such as
k-median and k-means clustering. In this paper, we propose fair algorithms for
performing HAC that enforce fairness constraints 1) irrespective of the
distance linkage criteria used, 2) generalize to any natural measures of
clustering fairness for HAC, 3) work for multiple protected groups, and 4) have
competitive running times to vanilla HAC. Through extensive experiments on
multiple real-world UCI datasets, we show that our proposed algorithm finds
fairer clusterings compared to vanilla HAC as well as other state-of-the-art
fair clustering approaches.
Related papers
- Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - Privacy-preserving Continual Federated Clustering via Adaptive Resonance
Theory [11.190614418770558]
In the clustering domain, various algorithms with a federated learning framework (i.e., federated clustering) have been actively studied.
This paper proposes a privacy-preserving continual federated clustering algorithm.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance.
arXiv Detail & Related papers (2023-09-07T05:45:47Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
Clustering algorithms could generate clusters such that different groups are disadvantaged within different clusters.
We develop a clustering algorithm, building upon the centroid clustering paradigm pioneered by classical algorithms.
We show that our method is effective in enhancing cluster-level group representativity fairness significantly at low impact on cluster coherence.
arXiv Detail & Related papers (2022-12-29T22:02:28Z) - Fair Labeled Clustering [28.297893914525517]
We consider the downstream application of clustering and how group fairness should be ensured for such a setting.
We provide algorithms for such problems and show that in contrast to their NP-hard counterparts in group fair clustering, they permit efficient solutions.
We also consider a well-motivated alternative setting where the decision-maker is free to assign labels to the clusters regardless of the centers' positions in the metric space.
arXiv Detail & Related papers (2022-05-28T07:07:12Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Fair Clustering Using Antidote Data [35.40427659749882]
We propose an alternate approach to fairness in clustering where we augment the original dataset with a small number of data points, called antidote data.
Our algorithms achieve lower fairness costs and competitive clustering performance compared to other state-of-the-art fair clustering algorithms.
arXiv Detail & Related papers (2021-06-01T16:07:52Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Fair Hierarchical Clustering [92.03780518164108]
We define a notion of fairness that mitigates over-representation in traditional clustering.
We show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.
arXiv Detail & Related papers (2020-06-18T01:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.