論文の概要: Hierarchical Attention Network for Action Segmentation
- arxiv url: http://arxiv.org/abs/2005.03209v1
- Date: Thu, 7 May 2020 02:39:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 23:34:32.258650
- Title: Hierarchical Attention Network for Action Segmentation
- Title(参考訳): 行動セグメンテーションのための階層的注意ネットワーク
- Authors: Harshala Gammulle, Simon Denman, Sridha Sridharan, Clinton Fookes
- Abstract要約: イベントの時間的セグメンテーションは、ビデオにおける人間の行動の自動認識のための重要なタスクであり、前駆体である。
我々は、時間とともに行動間の関係をよりよく学習できる、エンドツーエンドの教師あり学習手法を提案する。
我々は,MERLショッピング,50サラダ,ジョージア技術エゴセントリックデータセットなど,公開ベンチマークデータセットの課題を評価する。
- 参考スコア(独自算出の注目度): 45.19890687786009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The temporal segmentation of events is an essential task and a precursor for
the automatic recognition of human actions in the video. Several attempts have
been made to capture frame-level salient aspects through attention but they
lack the capacity to effectively map the temporal relationships in between the
frames as they only capture a limited span of temporal dependencies. To this
end we propose a complete end-to-end supervised learning approach that can
better learn relationships between actions over time, thus improving the
overall segmentation performance. The proposed hierarchical recurrent attention
framework analyses the input video at multiple temporal scales, to form
embeddings at frame level and segment level, and perform fine-grained action
segmentation. This generates a simple, lightweight, yet extremely effective
architecture for segmenting continuous video streams and has multiple
application domains. We evaluate our system on multiple challenging public
benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech
Egocentric datasets, and achieves state-of-the-art performance. The evaluated
datasets encompass numerous video capture settings which are inclusive of
static overhead camera views and dynamic, ego-centric head-mounted camera
views, demonstrating the direct applicability of the proposed framework in a
variety of settings.
- Abstract(参考訳): イベントの時間的セグメンテーションは、ビデオにおける人間の行動の自動認識のための重要なタスクであり、前駆体である。
注意を通してフレームレベルのサルエントな側面を捉えようとする試みはいくつか行われてきたが、フレーム間の時間的関係を効果的にマッピングする能力が不足している。
この目的のために,行動間の関係をよりよく学習し,全体的なセグメンテーション性能を向上させるための,エンドツーエンドの教師付き学習手法を提案する。
提案する階層的リカレント・アテンション・フレームワークは,複数の時間スケールで入力映像を分析し,フレームレベルとセグメントレベルで埋め込みを形成し,細粒度アクションセグメンテーションを行う。
これは、連続的なビデオストリームをセグメント化するためのシンプルで軽量で非常に効果的なアーキテクチャを生成し、複数のアプリケーションドメインを持つ。
MERLショッピング、50サラダ、ジョージア工科大学のエゴセントリックデータセットなど、複数の挑戦的な公開ベンチマークデータセットでシステムを評価し、最先端のパフォーマンスを達成する。
評価されたデータセットは、静的なオーバーヘッドカメラビューと動的でエゴ中心のヘッドマウントカメラビューを含む多数のビデオキャプチャ設定を包含しており、様々な設定で提案されたフレームワークの直接的適用性を示している。
関連論文リスト
- Rethinking Video Segmentation with Masked Video Consistency: Did the Model Learn as Intended? [22.191260650245443]
ビデオセグメント化は、ビデオシーケンスを、オブジェクトやフレーム内の関心領域に基づいて意味のあるセグメントに分割することを目的としている。
現在のビデオセグメンテーションモデルは、しばしば画像セグメンテーション技術から派生している。
本研究では,空間的・時間的特徴集約を向上する学習戦略であるMasked Video Consistencyを提案する。
論文 参考訳(メタデータ) (2024-08-20T08:08:32Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
対話型ビデオオブジェクトセグメンテーション(I-PT)のためのトレーニングフリープロンプトトラッキングフレームワークを提案する。
スパースポイントとボックストラッキングを共同で採用し、不安定なポイントをフィルタリングし、オブジェクトワイズ情報をキャプチャします。
我々のフレームワークは、人気のあるVOSデータセット上で、ゼロショットビデオセグメンテーションの堅牢な結果を示してきた。
論文 参考訳(メタデータ) (2024-06-08T14:25:57Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - TAEC: Unsupervised Action Segmentation with Temporal-Aware Embedding and
Clustering [27.52568444236988]
本稿では,教師なしの動画シーケンスからアクションクラスを学習するための教師なしアプローチを提案する。
特に,相対時間予測,特徴再構成,シーケンス・ツー・シーケンス学習を組み合わせた時間的埋め込みネットワークを提案する。
識別されたクラスタに基づいて、ビデオは意味論的に意味のあるアクションクラスに対応するコヒーレントな時間セグメントにデコードする。
論文 参考訳(メタデータ) (2023-03-09T10:46:23Z) - Unsupervised Action Segmentation with Self-supervised Feature Learning
and Co-occurrence Parsing [32.66011849112014]
時間的アクションセグメンテーションは、ビデオの各フレームをアクションラベルで分類するタスクである。
本研究では,ラベル付けされていないビデオのコーパスで動作する自己教師型手法を探索し,ビデオ全体にわたる時間的セグメントのセットを予測する。
我々は,行動の構造に基づくサブアクション間の相関を捉えるだけでなく,そのサブアクションの時間的軌跡を正確かつ一般的な方法で推定する,新しい共起動作解析アルゴリズムであるCAPを開発した。
論文 参考訳(メタデータ) (2021-05-29T00:29:40Z) - Temporally-Weighted Hierarchical Clustering for Unsupervised Action
Segmentation [96.67525775629444]
アクションセグメンテーションとは、ビデオにおける意味的に一貫した視覚概念の境界を推測することを指す。
ビデオ中のセグメンテーション動作に対して,トレーニングを必要としない完全自動かつ教師なしのアプローチを提案する。
提案手法は,ビデオの意味的に一貫性のあるフレームをグループ化できる効果的な時間重み付き階層クラスタリングアルゴリズムである。
論文 参考訳(メタデータ) (2021-03-20T23:30:01Z) - MS-TCN++: Multi-Stage Temporal Convolutional Network for Action
Segmentation [87.16030562892537]
本稿では,時間的行動分割タスクのための多段階アーキテクチャを提案する。
第1段階は、次の段階によって洗練される初期予測を生成する。
我々のモデルは3つのデータセットで最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T14:50:47Z) - Joint Visual-Temporal Embedding for Unsupervised Learning of Actions in
Untrimmed Sequences [25.299599341774204]
本稿では,共同視覚-時間埋め込み空間に基づく映像系列の教師なし学習手法を提案する。
提案手法は、連続したビデオフレームに存在する視覚的手がかりから有意義な視覚的、時間的埋め込みを提供することができることを示す。
論文 参考訳(メタデータ) (2020-01-29T22:51:06Z) - See More, Know More: Unsupervised Video Object Segmentation with
Co-Attention Siamese Networks [184.4379622593225]
教師なしビデオオブジェクトセグメンテーションタスクに対処するため,CO-attention Siamese Network (COSNet) と呼ばれる新しいネットワークを導入する。
我々は,ビデオフレーム間の固有相関の重要性を強調し,グローバルなコアテンション機構を取り入れた。
本稿では、ビデオ内のリッチなコンテキストをマイニングするために、異なるコアテンションの変種を導出する、統一的でエンドツーエンドのトレーニング可能なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-19T11:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。